
https://www.quantum-quest.org

Welcome to The Quantum Quest!

The goal of this five-week adventure is for you to learn the basics
of quantum computing. By the end of it, you will understand what
are quantum bits and quantum algorithms, and what are they good for.
Along the way, you will become good friends with Alice and Bob who
live in year 2058 and (just like you) also tinker with quantum computers
after school. While scientists are still building actual quantum computers
in their labs today, in 2058 quantum computers are everywhere, even in
your pocket! However, as with all technology, not everyone is using it
for good means, so you will have to help your two friends – Alice and
Bob – to invent various tricks to protect themselves from the evil hacker
Eve. Good luck on your adventure!

Truly quantumly yours,
Maris Ozols & Michael Walter

Reader’s guide

Throughout these lecture notes, we have included plenty of exercises (in green boxes) and
homeworks (in red boxes). The exercises are meant for you to test your understanding as you
read along, and we provide solutions for all of them at the end of each quest. The homeworks
are meant to be handed in each week. Some of the problems are marked as ‘optional’ – we
think they are not strictly necessary for following the course, but they provide good additional
practice. Some are also marked as ‘challenging’ – these are a bit harder then the rest!

Acknowledgments

We would like to thank to the following people for helping us run this web class: Doutzen Abma,
Sebastian Bach, Valerie Bettaque, Amalia Böttger, Milo Camardese, Arjan Cornelissen, Bas
Dirkse, Oliver Dorogi, Jari Egbers, Yassine Ferjani, Marten Folkertsma, Koen Groenland, Galina
Pass, Philip Verduyn Lunel, Anurudh Peduri, Simon Schmidt, Quinten Tupker, Mees de Vries,
Jordi Weggemans, Peter Ypma. We are also grateful to Craig Gidney, whose quantum simulator
QUIRK we modified to build QUIRKY. Finally, we would like to thank all the enthusiastic
students who participated in the web class.

https://algassert.com/quirk
https://www.quantum-quest.org/quirky/

The Quantum Quest

Maris Ozols and Michael Walter

November 2023

Contents

The Quantum Quest 1

1 Quest 1: Maestro of probability 3
1.1 Probabilistic bits . 3

1.1.1 Multiplying probabilities . 5
1.1.2 Adding probabilities . 5
1.1.3 Probability and computation . 6

1.2 Operations on a probabilistic bit . 7
1.2.1 Extending by linearity . 8
1.2.2 Random operations . 9

1.3 Measuring a probabilistic bit . 10
1.4 The QUIRKY simulator . 12

1.4.1 Getting started . 12
1.4.2 Making your own operations . 14
1.4.3 A mysterious operation . 14

1.5 Exercise solutions . 16

2 Quest 2: Conqueror of the qubit 19
2.1 Quantum bits . 19

2.1.1 Probabilities versus amplitudes . 19
2.1.2 Qubit as a circle . 20

2.2 Measuring a quantum bit . 21
2.3 Simulating quantum bits with QUIRKY . 23
2.4 Operations on a quantum bit . 24

2.4.1 Rotations . 26
2.4.2 Composing quantum operations . 28
2.4.3 Reflections . 29

2.5 Distinguishing quantum states . 30
2.5.1 Another mysterious operation . 32

2.6 Interlude on physics (optional) . 33
2.6.1 Interference . 33
2.6.2 Polarization . 35

2.7 Exercise solutions . 37

1

3 Quest 3: Wizard of entanglement 41
3.1 Two probabilistic bits . 41

3.1.1 Measuring both bits . 42
3.1.2 Local operations . 43
3.1.3 Measuring only one bit . 45
3.1.4 State of the other bit . 46
3.1.5 SWAP operation . 48
3.1.6 Controlled-NOT operation . 48
3.1.7 Product distributions . 50
3.1.8 Correlated distributions . 52

3.2 Two quantum bits . 54
3.2.1 Measuring two qubits . 56
3.2.2 Local operations . 56
3.2.3 Parallel operations . 58
3.2.4 Controlled operations . 60
3.2.5 Entangled states . 61
3.2.6 Entanglement and correlations . 63
3.2.7 The power of entanglement . 64

3.3 Exercise solutions . 67

4 Quest 4: Quantum composer 73
4.1 Quantum circuits . 73

4.1.1 Many quantum bits . 73
4.1.2 Operations . 75
4.1.3 The most general quantum operations . 77
4.1.4 Circuit identities . 77
4.1.5 Measuring all qubits . 78
4.1.6 Measuring some of the qubits only . 79

4.2 Quantum surprises . 81
4.2.1 No cloning . 82
4.2.2 One-time pad . 83
4.2.3 Quantum teleportation . 84
4.2.4 A glance at quantum networks . 88
4.2.5 The uncertainty principle . 89

4.3 Exercise solutions . 92

5 Quest 5: Algorithm virtuoso 95
5.1 Talking to oracles . 96

5.1.1 Reversible computation . 97
5.1.2 Bit oracles . 98
5.1.3 Sign oracles . 99

5.2 Quantum algorithms . 101
5.2.1 Deutsch’s algorithm . 101
5.2.2 Hadamard transform and interference . 103
5.2.3 Deutsch-Jozsa algorithm . 106
5.2.4 Bernstein-Vazirani algorithm . 107

5.3 Searching with Grover . 109
5.3.1 Angle amplification . 111

5.4 Your quantum journey . 111
5.5 Exercise solutions . 112

2

Quest 1: Maestro of probability

Welcome to the first week of The Quantum Quest – you are at the very beginning of an
exciting adventure!

Quantum computing is a fascinating topic that can easily capture your imagination. The
main source of our fascination with it is the strangeness of the quantum world. However, it
is also the main source of our confusion. Indeed, it is not hard to get entangled in quantum
weirdness or lost in the exponentially big state space of a quantum computer. To avoid such
trouble, you need to prepare yourself by first getting familiar with the world of probabilities.
Once you have become a maestro of probability, you will be able to unlock the door to the
quantum world as well!

The goal of the first quest is for you to learn about probabilities and probabilistic bits: what
are the states of a probabilistic bit, what are the allowed operations on it, and how can we
extract information from a probabilistic bit by a measurement? The main focus of the second
quest will be quantum bits, which are very similar to probabilistic bits.

1.1 Probabilistic bits

Probabilities are used to quantify the likelihood of events – the more likely an event is, the
larger its probability. An event that occurs with certainty has probability 1 (indeed, it has a
100% chance of happing) while an event that never occurs has probability 0. �

As an example, we can think of tossing a coin. If you toss a coin and cover it with your hands
without looking at it, there are two possible events – either the coin shows “heads” or it shows
“tails”. For a fair coin, the two events are equally likely to occur, so we assign a probability
of 1

2 = 0.50 or 50% to both (this is represented by in Fig. 1.1). However, the coin could be
biased and more likely to land on one side than the other. Depending on how biased it is, we
can imagine a whole spectrum of possibilities: one extremely biased coin might always show
“heads” while another might always show “tails” (see and on the left and right side of
Fig. 1.1). The first coin shows “tails” with probability 0 (since it always shows “heads”) while
the second shows “tails” with probability 1.

0 = 0% 1
2 = 50% 1 = 100%

always heads fair always tails

Figure 1.1: A probabilistic bit describing the state of a random donkey coin.

Since we don’t want to worry about designing coins of different shapes and sizes, it is
helpful to somehow abstract the information represented by a coin toss. We can do this by
associating the outcomes “heads” and “tails” with the bit values 0 and 1, respectively. The coin
toss can then be described by two probabilities: the probability p0 that it is equal to 0 (“heads”),
and the probability p1 that it is equal to 1 (“tails”). Such a bit that attains its two possible values
with some probabilities is called a probabilistic bit. Note that the two probabilities p0, p1 ≥ 0
must necessarily add to one: p0 + p1 = 1. For example, if the coin is fair then p0 = p1 = 1

2 , as
explained above. �

Did you notice that it would be enough to specify just one of the probabilities p0 or p1 since
either of them can be obtained from the other? For clarity we will always specify both and write

3

https://video.uva.nl/media/0_45mjxip2
https://video.uva.nl/media/0_omj4e85g

them down as a vector:

p =

(
p0
p1

)
. (1.1)

We call this vector the probability distribution or the state of the probabilistic bit. This vector
notation is convenient not only for collecting all probabilities together in a nice table, but it will
also provide a geometrical way to visualize a probabilistic bit. Moreover, it will help us to see
the analogy between probabilistic and quantum bits.

We will call the states associated to 0 or “heads” and to 1 or “tails” deterministic, since in this
case there is no uncertainty – is it fully determined which side of the coin is up. In Eq. (1.1), they
correspond to probability distributions with p0 = 1, p1 = 0 and p0 = 0, p1 = 1, respectively.
Since they will be used very often, it is convenient to introduce a shorthand notation for them:

[0] =
(

1
0

)
, [1] =

(
0
1

)
. (1.2)

This notation might look confusing at first, but you can also think of [0] and [1] as and or
as [heads] and [tails], if you wish.

These two states form a basis of all states, meaning that we can express any other state of a
probabilistic bit as a linear combination of them:

(
p0
p1

)
= p0

(
1
0

)
+ p1

(
0
1

)
= p0[0] + p1[1]. (1.3)

Every state is a two-dimensional vector, which we can visualize in a two-dimensional coordinate
system. Then the possible states of a probabilistic bit is precisely the line segment connecting the
two points [0] and [1] which correspond to the two deterministic states of the bit (see Fig. 1.2).

[0]

[1]

0 1
2 1 p0

0

1
2

1

p1

p0 + p1 = 1

Figure 1.2: The blue line segment corresponds to the states of a probabilistic bit.

Exercise 1.1: Understanding the blue line segment

According to Fig. 1.2, the possible states of a probabilistic bit form a line segment. Take
some time to investigate this. See if you can answer the following questions:

1. Why do the states of a probabilistic bit all lie on a line?

2. Why does this line end at the coordinate axes and does not go further?

3. Which point on the line segment corresponds to a fair coin?

4

1.1.1 Multiplying probabilities

If you toss two coins, what is the probability that both coins are “heads”? Assume the two coins
are described by probabilistic bits

a =

(
a0
a1

)
and b =

(
b0
b1

)
, (1.4)

where outcome 0 corresponds to “heads” and outcome 1 to “tails”. Then the probability to get
“heads” for coin a is a0 while for coin b it is b0. (We don’t assume that the coins are fair, so these
probabilities are not necessarily 50%.) The probability that both coins simultaneously show
“heads” is given by multiplying the probabilities of the two individual events:

p00 = a0b0. (1.5)

Note that p00 ≤ a0 and p00 ≤ b0 since a0 ≤ 1 and b0 ≤ 1. This is intuitive, since getting “heads”
simultaneously for both coins should be no more likely (and is typically less likely) than getting
it for any of the coins individually. You can similarly compute the probabilities of all other
combinations of heads and tails. We summarize all four cases in the following table:

p00 = a0b0, p01 = a0b1,
p10 = a1b0, p11 = a1b1.

(1.6)

We call two events independent if they originate from two different sources, and the
occurrence of one of them doesn’t tell you anything about the occurrence of the other. Typically
such situation is described using the word “and”. For example, “the first coin is heads and the
second coin is tails”. We multiply probabilities if we want to know if two independent events
occurred simultaneously.

Exercise 1.2: Multiplying probabilities

Alice is bored during her math class and starts looking at her digital watch. The second’s
counter on her watch can show values from to . Assume that at some random point
within the next minute Alice looks at the second’s counter on her watch.

1. What is the probability that she sees ?

2. What is the probability that the last digit is ?

3. What is the probability that the first digit is ?

4. Argue that the values of both digits are independent from each other. Verify your
answer to question 1 by multiplying the probabilities from questions 2 and 3.

1.1.2 Adding probabilities

Consider now the following slightly more complicated problem. Assume again that you toss
the coins a and b. What is the probability that both coins show the same outcome? There are
two ways this could happen – either both coins are “heads” or both coins are “tails”. We already
know from Eq. (1.6) that the probabilities of these two individual events are

p00 = a0b0, p11 = a1b1.

Then the probability that one of these two events occurs is obtained by adding the probabilities:

p00 + p11 = a0b0 + a1b1. (1.7)

5

You add probabilities when you want to group multiple outcomes of the same experiment
together. Such combined events can usually be described using the word “or”. For example,
“both coins are heads or both coins are tails”. Be careful: this only works when the two coins do
not influence each other!

Exercise 1.3: Adding probabilities

Bob is also bored during the math class. He notices that Alice is staring at her watch so
he takes a look at his watch too. Surprisingly, its second’s counter shows , which seems
very unlikely to Bob. What is the probability that both digits of the second’s counter are the
same if Bob takes a look at his watch at some random point within a minute?

Now that you know when to add and when to multiply probabilities, try to solve your first
homework assignment!

Homework 1.1: Opposite coins

Alice tosses two coins called a and b, with probability distributions

a =

(
2/3
1/3

)
, b =

(
3/4
1/4

)
.

What is the probability that the two coins produce opposite outcomes?

1.1.3 Probability and computation

Is there any use of probabilistic bits in computation? It might seem at first that they are not
particularly useful since the values 0 and 1 of a regular bit represent definite knowledge while a
probabilistic bit represents approximate knowledge (or the lack of knowledge). Why should I
waste the space on my computer to store probabilistic bits that reflect my lack of information if
instead I could store the actual information that I have, even if it is incomplete? The advantage
of probabilistic bits is that they represent partial knowledge more accurately – if you don’t
know something, it is better to admit it and make a random guess rather than pretend that you
know the correct answer with certainty. This is illustrated in the problem below where Alice’s
donkey robot has to make a decision while lacking full information.

Homework 1.2: Alice’s donkey

1 km

1 km1 km

Problem: Alice wants to program her donkey robot so
that it can walk on its own to a charging station and
charge itself. There are three nearby stations, each at a
distance of 1 km from the donkey, forming an equilateral
triangle with the donkey located in its center. Alice’s
donkey has enough battery left to walk only 2.8 km.

Alice is going to upload a program to her donkey
robot that tells it where to go, however she knows that
her evil classmate Eve is trying to sabotage her. Since Eve
can read everything that’s transmitted over the WiFi, Eve
can also see what program Alice is uploading. Because of
this, once the program is uploaded, Alice will disconnect
her donkey from the WiFi so that Eve cannot follow its movements. While the donkey
walks, the only way for Eve to sabotage it is by hacking and disabling the charging stations
towards which it has been programmed to go. However, Eve can shut down only two
stations before her intrusion is detected. Since Eve cannot follow the donkey’s movements,

6

she has to decide which two charging stations to disable based only on Alice’s program.

Questions:

1. How many charging stations can the donkey visit before its battery runs out?

2. Assume that Alice programs her donkey to visit stations in some predetermined order.
Can Eve prevent it from reaching a working charging station? Remember that Eve
has full access to Alice’s program and so she knows in what order the donkey is
programmed to visit the stations.

3. Assume that Alice programs the donkey to make its own random choices about
where to go. (While Eve can see that this is what Alice has programmed, she cannot
predict what choices the donkey will make once it starts to walk.) What randomized
strategy should Alice upload to the donkey, and what hacking strategy should Eve
use to counteract it? What is the probability that Alice’s donkey successfully reaches
a working charging station if both Alice and Eve are using optimal strategies?

1.2 Operations on a probabilistic bit �
Once we have represented bits of information by vectors, we can represent operations on these
bits by linear transformations and use tools from linear algebra. For example, consider the
operation that exchanges “heads” and “tails” of a donkey coin:

[0]

[1]

[0]

[1]

Input
bit

Output
bit

We will denote this operation by NOT and write it down mathematically as follows:

NOT = , NOT = . (1.8)

Using the conventions from Eq. (1.2), we can also write

NOT [0] = [1], NOT [1] = [0]. (1.9)

Note that we are writing NOT p as an abbreviation to NOT(p) – both simply mean that the
operation NOT acts on a vector p.1 We will generally write operations with capital letters to
distinguish them from numbers and vectors.

Recall from Eq. (1.2) that the vectors [0] and [1] represent the deterministic states 0 and 1 of
a probabilistic bit. Since the NOT operation exchanges these two vectors, it negates the value
of the bit. This is precisely why we called it “NOT” – it represents the logical negation! One
simple application of NOT is to enter some data in your computer. If all bits of your computer
are initially set to 0, you can change some of them to 1 to enter data – this is often the first step
of a computation.

How should we define the NOT operation on a probabilistic bit p =
(p0

p1

)
? With probability

p0, the bit is zero and will get flipped to a one. With probability p1, the bit is one and will get
flipped to a zero. Thus, the effect of the NOT operation on a probabilistic bit is simply

1We could also write NOT · p since this action actually corresponds to matrix-vector multiplication.

7

https://video.uva.nl/media/0_jec4jgbr

NOT
(

p0
p1

)
=

(
p1
p0

)
. (1.10)

In particular, this recovers Eq. (1.9) when p0 = 1 (and p1 = 0) or p0 = 0 (and p1 = 1). You can
intuitively think of the NOT operation and Eq. (1.10) as follows: if you imagine a probabilistic bit
as a coin that you have tossed but have not looked at yet, then the NOT operation corresponds
to turning the coin around (again, without looking at it).

Exercise 1.4: Visualizing the NOT operation

Recall from Fig. 1.2 that all possible states of a probabilistic bit correspond to a line segment.
Let us try to visualize how the NOT operation transforms this line segment.

1. Take an arbitrarya point with coordinates (p0, p1) on this segment. Where is it sent to
by the NOT operation?

2. Where are the two endpoints of the line segment sent to?

3. Is there any point on the line segment that is sent to itself?

aWhen we say ‘arbitrary’, we mean that your calculation must work for any choice of p0 and p1. It is
often best to write all the steps, including your final answer, in terms of p0 and p1, treating them as unknown
numbers.

1.2.1 Extending by linearity�
How should we define M

(p0
p1

)
when M is an arbitrary operation on a bit? As before, we assume

that we know how M acts on the two possible values of the bit, and we write M [0] for the
result of the operation when the bit is zero, and M [1] for the result of the operation when the
bit is one. (For the NOT operation, this was precisely what we did in Eq. (1.9).) Let us try to
apply the same reasoning as above. With probability p0, the bit is zero and so we obtain M [0]
by applying the operation M. With probability p1, the bit is one and we obtain instead M [1].
Together, we see that we should define

M
(

p0
p1

)
= p0 M [0] + p1 M [1], (1.11)

where p0 M [0] means that we are multiplying the vector M [0] by the probability p0.

Exercise 1.5: NOT on probabilistic bits

Show that when M is the NOT operation then Eq. (1.11) reproduces precisely Eq. (1.10).

Using Eq. (1.3), we can also write Eq. (1.11) in the following way:

M
(

p0 [0] + p1 [1]
)
= p0 M [0] + p1 M [1]. (1.12)

Note that the difference between the two sides is in the order of operations: on the left-hand
side we first take a linear combination and then act with M, while on the right-hand side we
first act with M and only then take the linear combination. This equation looks very similar to
the familiar rule a(b + c) = ab + ac for numbers (the “distributive law”).

If M is an operation on probabilistic bits that satisfies Eq. (1.12) then we say that M is
linear. Our rule in Eqs. (1.11) and (1.12) for extending M from bits to probabilistic bits is called
extending by linearity. We will often use the same idea also for quantum bits.

8

https://video.uva.nl/media/0_tkyvxgmg

1.2.2 Random operations

Note that, in our derivation of Eq. (1.11), we did not in fact assume that M [0] and M [1] were
again one of the two deterministic states [0] or [1] of a bit (even though this happened to be the
case for the NOT operation). This means that Eq. (1.11) works just as well when M [0] or M [1]
are probabilistic bits! In this case we say that M is a random operation. �

One of the simplest examples of a random operation is as follows. Imagine that you encode
[0] by placing a pencil horizontally on a table, and [1] by balancing it vertically. If you gently hit
the table with your hand, the pencil might fall down, changing its state from [1] to [0]. However,
if it was already laying down, its state [0] will not change. Thus hitting the table probabilistically
resets the pencil’s state to [0]; the harder you hit, the more likely you are to reset it.

Mathematically, probabilistic reset is described by an operation R(r) defined as

R(r) [0] = [0] =
(

1
0

)
, R(r) [1] = r [0] + (1− r) [1] =

(
r

1− r

)
, (1.13)

where r ∈ [0, 1] is the reset probability. You can visualize the action of this operation as
follows:

[0]

[1]

[0]

[1]

1

r

1− r

Input
bit

Output
bit

By linearity, we can extend this operation to all states:

R(r)
(

p0
p1

)
= p0 R(r) [0] + p1 R(r) [1]

= p0

(
1
0

)
+ p1

(
r

1− r

)
=

(
p0 + p1r
p1(1− r)

)
.

As a special case of this equation, note that R(0) does not change the state at all while R(1)
resets any state to [0].

�
Another interesting example of a random operation is the probabilistic flip operation F(f)

that flips the input bit with probability f and leaves it alone with probability 1− f :

F(f) [0] = (1− f) [0] + f [1], F(f) [1] = f [0] + (1− f) [1], (1.14)

where f ∈ [0, 1] is the flip probability. More intuitively, imagine that [0] and [1] represent
two states of a light switch on a wall. If you throw a pillow at the switch, you will successfully
hit and flip it only with probability f , and with probability 1− f it will remain unchanged. You
can visualize the action of F(f) as follows:

[0]

[1]

[0]

[1]

1− f

f

f

1− f

Input
bit

Output
bit

The next exercise will help you to get more familiar with the probabilistic flip operation.

9

https://video.uva.nl/media/0_nwo3morj
https://video.uva.nl/media/0_34olk48p

Exercise 1.6: Probabilistic flip

Recall that F(f) denotes the probabilistic flip operation from Eq. (1.14).

1. Write down F(f) [0] and F(f) [1] as vectors.

2. For what value of f does F(f) act as NOT? How can we prepare a probabilistic bit in
an arbitrary state

(p
1−p
)

from [0] by using F?

3. Extend F(f) by linearity to probabilistic bits by computing F(f)
(p0

p1

)
.

4. Let
(p0

p1

)
be an arbitrary probability distribution. Show that F(1/2)

(p0
p1

)
=
(1/2

1/2

)
.

The last part of this exercise shows that F(1/2) always prepares the uniform distribution,
no matter the input distribution. This can be used for simulating the toss of an unbiased coin.
In fact, in the next exercise, you will show that by carefully adjusting the flip probability f you
can also use F(f) to change the bias of a given coin.

Homework 1.3: Chocolate coin
Today is Bob’s birthday! Since he likes chocolate, Alice decides to make a chocolate coin
for him. To make it more special, the shape of the coin should be such that if you spin it
on the table, it would land on with probability q = 5/15 that represents Bob’s birthday,
May 15th. After experimenting with several different shapes, Alice manages to produce a
chocolate coin with the right probability. Very excited, she leaves it on the table and runs to
the shop to buy a nice birthday card.

Unfortunately, when she returns, Alice realizes that the coin was left in the sun and
its edge has melted. After trying it out, Alice determines that the new probability of is
p = 4/15. Since there is no time left to fix the problem, Alice writes on the birthday card
that once the coin has landed, Bob should flip it around with probability f , and only then he
will observe with the right probability q. Help Alice to determine the right value of f .

Hint: The quantities p, q, and f should satisfy F(f)
(p

1−p
)
=
(q

1−q
)
.

Exercise 1.7: Flip from reset and NOT (optional and challenging)

How can you build F(f) using the R(r) and NOT operations?

1.3 Measuring a probabilistic bit

If you toss a fair coin and immediately cover it, you have no idea on which side it landed. In this
situation your knowledge about the state of the coin is described by the uniform distribution

=

(
1/2
1/2

)
=

1
2
[0] +

1
2
[1]. (1.15)

However, if you uncover the coin and see “heads”, your knowledge is updated to

= [0] (1.16)

because now you know with certainty that heads is up. We will refer to the process of uncovering
a probabilistic coin to determine which side is up as measurement.2

Notice from Eqs. (1.15) and (1.16) that the state of the coin before and after the measurement
is different. Indeed, after the measurement you are no longer ignorant about which side is up.

2We have borrowed this term from quantum computing where we will see that a similar procedure exists.

10

Now, imagine you cover the coin again after you have just measured it. What is its state now?
Well, it clearly is still

= [0] (1.17)

because you already know that “heads” is up. In fact, even if you measure (look at) the coin
again, you will still see “heads”. Similarly, if you got “tails” the first time you measured a
random coin, you will keep getting “tails” no matter how many times you measure it again.

More generally, if you have a probabilistic bit described by the distribution
(p0

p1

)
, measuring

it yields the outcome 0 (or “heads”) with probability p0 and 1 (or “tails”) with probability p1:

p0[0] + p1[1]

[0] [1]

p0 p1

(1.18)

The state of the probabilistic bit after the measurement is no longer
(p0

p1

)
but one of the basis

states [0] =
(

1
0

)
or [1] =

(
0
1

)
, depending on the measurement outcome. For example, if you got

outcome 1 (or “tails”), the new state is [1]. In general a measurement changes the state!
An important point about measurements is that they do not let you extract the actual

probabilities p0 and p1 – all you get as a measurement outcome is a single bit 0 or 1. Also, your
original probabilistic bit

(p0
p1

)
is gone after the measurement, so you cannot measure it again.

This is in fact quite intuitive. If we toss a coin exactly once then we get a single random outcome
– but from this single outcome alone we cannot learn whether the coin was fair or biased!

However, suppose we toss the same coin a large number of times. In this case we would
expect that the fraction of times that we obtain outcome 1 is roughly p1. In other words,

N1

N
≈ p1, (1.19)

where N is the total number of measurements and N1 the number of times that we obtained
outcome 1. The more outcomes we have gathered, the better the approximation should get.3

This provides us with a procedure for estimating p1. Of course, since p0 + p1 = 1, this
also gives us an estimate of p0. For example, Alice could use this procedure to estimate the
probability that her biased coin in Homework 1.3 lands on and . You can now try this out
for yourself.

Homework 1.4: Coin tossing

1. Find a coin and draw on its two sides 0 and 1 with a marker. Toss it 30 times and
write down the outcomes in a table of the following form:

Number of tosses N 1 2 3 4 5 6 7 8 9 . . . 30
The N-th outcome 1 0 1 0 0 0 1 1 1 . . . 1

(The gray outcomes are just an example. Replace them by the outcomes that you got.
)

2. Estimate the probability of getting outcome 1 for your coin by using Eq. (1.19).

3How good is this estimate? One can show that, on average, the error is of the order of 1/
√

N, so quickly goes to
zero if we repeat the experiment many times.

11

3. It is interesting to see how the estimate changes as you increase the number of tosses N.
For this, extend your table from part 1 by three more rows so that it looks as follows:

Number of tosses N 1 2 3 4 5 6 7 8 . . . 30
The N-th outcome 1 0 1 0 0 0 1 1 . . . 1

Cumulative sum N1 1 1 2 2 2 2 3 4 . . . 16
Ratio N1/N 1 1/2 2/3 2/4 2/5 2/6 3/7 4/8 . . . 16/30

Its numerical value 1.00 0.50 0.67 0.50 0.40 0.33 0.43 0.50 . . . 0.53

The meaning of the rows is as follows: (1) the number N of tosses so far, (2) the
outcome of the N-th toss, (3) the sum of the first N outcomes, (4) the estimate of the
probability of getting outcome 1 based on the first N tosses, (5) the numerical value of
this estimate. Feel free to use Excel or a similar program to make this table.

4. Plot the last row of your table as a function of the number of tosses N.

1.4 The QUIRKY simulator�
The laws of probability can be somewhat counterintuitive. Fortunately, you can always try to
simulate its behavior by using the computer you have at home (or the one in your pocket).4

In this course we will use a simulator called QUIRKY. QUIRKY is the little sibling of Quirk, a
more featureful simulator developed by Craig Gidney at Google. Since Craig released his code
under an open source license, we could adapt his simulator for our needs in this course. One of
the best features of QUIRKY is that it runs right in your web browser – no installation required!
Simply go to:

https://www.quantum-quest.org/quirky

and click on “Quest 1”. Try it now – you can even open QUIRKY on your mobile phone! When
you open QUIRKY for the first time, it should look like in Fig. 1.3.

1.4.1 Getting started

Let’s go through the interface of QUIRKY step by step. At the top, you find a menu bar with
some useful commands:

The ‘Reset’ button allows you to reset QUIRKY and start from scratch. The ‘Undo’ and ‘Redo’
buttons are self-explanatory. It is useful to know that you can even undo resetting the simulator.
Press ‘Share’ to get some options for sharing your program with your friends. We will talk
about the ‘Make R(r)’ button later.

Below the menu follows the toolbox that contains the basic operations that we learned so far:

For example, the first box,
⊕

, is the NOT operation from §1.2, which sends the [0] state to [1]
and vice versa. We will discuss the other two operations momentarily. Luckily you do not have
to remember all this – simply hover your mouse over each box to see its description.

Below the toolbox comes the heart of the QUIRKY, the probabilistic bit:
4To some extent this is true even for quantum computers – but we are getting ahead of ourselves. . .

12

https://video.uva.nl/media/0_ptnkgtj7
https://www.quantum-quest.org/quirky

Figure 1.3: QUIRKY opened for the first time.

The double line or ‘wire’ corresponds to a bit, initialized in the state [0]. You can place operations
simply by dragging and dropping them from the toolbox onto the wire. Try now to build the
following simple computation in QUIRKY:5

How can we visualize the result of such a computation? Since we will in general be dealing
with probabilities, what we are after is in fact a way of displaying probabilities. This is achieved
by the green box labeled Prob in the ‘Display’ section of the toolbox. Let’s add it to our
computation and see what happens:

It looks like that measurement outcome will be ‘one’ 100% of the time (hover the box with your
mouse to confirm our suspicion). Of course, this is precisely what we expect. The initial [0]
gets transformed to a [1] state by the NOT operation, so that the outcome will always be ‘one’
according to the measurement rules in Eq. (1.18).

Exercise 1.8: Removing an operation

In QUIRKY, you can also remove operations simply by dragging and dropping them away
from the wire and back to the toolbox. Remove the NOT operation from the computation,
and confirm that the outcome is now ‘zero’ with certainty.

5If you read a digital version of these notes then you can simply click on any of the images to open QUIRKY in
your browser. Everything you see in the image will then automatically be included! If this doesn’t work just go to
https://www.quantum-quest.org/quirky yourself.

13

https://www.quantum-quest.org/quirky/QuirkyQuest1.html
https://www.quantum-quest.org/quirky/QuirkyQuest1.html
https://www.quantum-quest.org/quirky/QuirkyQuest1.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest1.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%5D%2C%5B%22Chance1%22%5D%5D%7D
https://www.quantum-quest.org/quirky

1.4.2 Making your own operations

So far, we only know how to create the [0] and [1] states using QUIRKY. To create an interesting
probability distribution, we can use the reset operation R(r) from §1.2.2. Since there are infinitely
many such operations (one for each choice of r), we could not add them all to the toolbox.
Instead, you can add your own reset operations to the toolbox!

Let’s practice by adding an operation that resets with probability r = 1
2 = 50%. To start,

select ‘Make R(r)’ in the menu bar. A new window appears where you can input an angle:

Enter 1/2, and confirm by pressing the button. Congratulations! You have successfully added
the R(1/2) operation to the toolbox, which now looks as follows:

To test our new rotation, let us build the following computation in QUIRKY:

Let’s quickly see that this outcome makes sense. We started with the [0] =
(

1
0

)
state. The NOT

operation flips the bit into the [1] =
(

0
1

)
state. By Eq. (1.13), the operation R(1/2) resets a bit in

state [1] with probability 1
2 , that is, it changes the state to

R(1/2) [1] =
1
2
[0] +

1
2
[1] =

(
1/2
1/2

)
=

(
50%
50%

)
.

This is precisely what QUIRKY told us.
In the following exercise you will use QUIRKY to carry out a more complicated experiment.

Homework 1.5: Resetting twice

1. Build the following sequence of operations using QUIRKY: First prepare the state
[1], then reset with probability 1

4 , then reset with probability 2
3 . Use the probability

display in QUIRKY to determine the probability of the measurement outcomes.

2. Argue that the answer given by QUIRKY is correct.

1.4.3 A mysterious operation�
We still have not discussed the mysterious orange box. Let us call this operation M. How
can we figure what is going on inside the box? As a first step, let us consider the problem of
determining M [0], that is, the result of applying the mysterious operation M to a bit in state [0].
In QUIRKY, this corresponds to the following setup:

14

https://www.quantum-quest.org/quirky/QuirkyQuest1.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%5D%2C%5B%22~jgr7%22%5D%2C%5B%22Chance1%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~jgr7%22%2C%22name%22%3A%22R(1%2F2)%22%2C%22matrix%22%3A%22%7B%7B1%2C0.5%7D%2C%7B0%2C0.5%7D%7D%22%7D%5D%7D
https://video.uva.nl/media/0_z8jjsppq
https://www.quantum-quest.org/quirky/QuirkyQuest1.html#circuit=%7B%22cols%22%3A%5B%5B%22MysteryBop%22%5D%5D%7D

How can we read off M [0]? At this point it is good to remind ourselves that when random
bits appear in nature we cannot simply look at them and read off their probabilities. Instead, as
explained in §1.3, we have to perform many measurements (e.g., toss a coin many times) and
estimate the probabilities from the outcomes. The advantage of using a simulator like QUIRKY

is that we do not have to play by these rules – we can use the probability display to determine
the state:

Thus, we find that

M [0] = 0.2 [0] + 0.8 [1].

Now it is your turn!

Homework 1.6: Mystery time

1. Determine the state M [1].

2. Do M [0] and M [1] specify the random operation M completely?
If yes, write down a formula for M

(1/2
1/2

)
and verify it in QUIRKY. If not, explain why.

In the coming weeks we will make the jump from ordinary bits to quantum bits, and learn how
to compute with them in increasingly sophisticated ways. QUIRKY will serve as our trusty tool,
gaining new capabilities as we move along. You are warmly encouraged to use it to investigate
the theory that you will learn, as well as to help you solve your homework problems.

15

https://www.quantum-quest.org/quirky/QuirkyQuest1.html#circuit=%7B%22cols%22%3A%5B%5B%22MysteryBop%22%5D%2C%5B%22Chance1%22%5D%5D%7D

1.5 Exercise solutions

Solution to Exercise 1.1

1. Since one of the two events has to occur, the two probabilities necessarily add to 1.
This means that p0 + p1 = 1. If you write this as p1 = 1− p0 you recognize this as the
equation of a line with slope minus one.

2. If the line would go further one of the probabilities would become negative. Since
probabilities cannot be negative, we must require that p0 ≥ 0 and p1 ≥ 0, which is
equivalent to saying that the line segment must end at the coordinate axes.

3. This is the midpoint, where p0 = p1 = 1
2 .

Solution to Exercise 1.2

1. The counter can have 60 different values. The probability to see any of them is 1
60 .

2. The last digit has 10 different values. The probability to see any of them is 1
10 .

3. The first digit has 6 different values. The probability to see any of them is 1
6 .

4. If you see only the first digit, the last digit could have any of the 10 possible values
with equal probability. Similarly, if you see only the last digit, the first digit can have
any of the 6 possible values with equal probability. Hence, the values of the two
digits are independent. You can verify that the probability to see is indeed 1

60 by
multiplying the probabilities of each digit to be :

1
6
· 1

10
=

1
60

.

Solution to Exercise 1.3
There are six possible cases when both digits are the same (from to). Each of these
cases occurs with probability 1

60 . We can group them together in a single event whose
probability is the sum of the probabilities of the six individual events:

1
60

+
1
60

+
1

60
+

1
60

+
1
60

+
1
60︸ ︷︷ ︸

6 terms

=
6
60

=
1
10

.

16

Solution to Exercise 1.4

1. Note from Eq. (1.10) that the point (p0, p1) is sent to (p1, p0). In other words, the two
coordinates of the point are exchanged. Here is an example of how this looks like:

(p0, p1)

(p1, p0)

p0

p1

You can thus think of the NOT operation as the reflection around the dashed line that
goes right in the middle between the two coordinate axes.

2. According to Eq. (1.2), the two end-points (1, 0) and (0, 1) of the line segment corre-
spond to the two deterministic states [0] and [1]. Recall from Eq. (1.9) that the NOT
operation exchanges them.

3. A point with coordinates (p0, p1) remains fixed by the NOT operation if (p0, p1) =
(p1, p0), meaning that p0 = p1. Since p0 + p1 = 1, we find that p0 = p1 = 1/2 which
corresponds to the point (1/2, 1/2). This is the only point that remains fixed.

Solution to Exercise 1.5
Using Eqs. (1.9) and (1.11),

NOT
(

p0
p1

)
= p0 NOT

(
1
0

)
+ p1 NOT

(
0
1

)
= p0

(
0
1

)
+ p1

(
1
0

)
=

(
p1
p0

)
,

which is Eq. (1.10).

17

Solution to Exercise 1.6

1. Using the definition of F(f) in Eq. (1.14),

F(f) [0] = (1− f)
(

1
0

)
+ f

(
0
1

)
=
(1− f

f

)
,

F(f) [1] = f
(

1
0

)
+ (1− f)

(
0
1

)
=
(f

1− f

)
.

2. F(f) flips the bit with certainty when f = 1, so NOT = F(1). To prepare an arbitrary
state

(p
1−p
)

from [0] we need to choose f = 1− p. Indeed, we see from the first
equation above that

F(1− p) [0] =
(

1− (1− p)
1− p

)
=

(
p

1− p

)
.

3. Following Eq. (1.11),

F(f)
(

p0
p1

)
= p0

(
1− f

f

)
+ p1

(
f

1− f

)
=

(
p0(1− f) + p1 f
p0 f + p1(1− f)

)
.

4. Substituting f = 1/2 in the previous equation we get

F(1/2)
(

p0
p1

)
=

(
p0/2 + p1/2
p0/2 + p1/2

)
=

1
2

(
p0 + p1
p0 + p1

)
=

1
2

(
1
1

)
.

Solution to Exercise 1.7
We distinguish two cases:

• 1
2 ≤ f ≤ 1: In this case, 0 ≤ 1− f

f ≤ 1. We claim that the flip operation F(f) can be

built by first applying R(1− f
f), then NOT, and finally R(1− f). Indeed:

R(1− f)NOT R(1− f
f) [0] = R(1− f)NOT [0] = R(1− f) [1] = (1− f) [0] + f [1]

and

R(1− f)NOT R(1− f
f) [1] = R(1− f)NOT

(
1− f

f [0] + (1− 1− f
f) [1]

)
= R(1− f)

(
(1− 1− f

f) [0] + 1− f
f [1]

)
= (1− 1− f

f) [0] + 1− f
f ((1− f) [0] + f [1])

= f [0] + (1− f) [1].

• 0 ≤ f ≤ 1
2 : This case can be reduced to the first, since F(f) is the same as first applying

F(1− f) and then NOT.

18

Quest 2: Conqueror of the qubit

Now that you have mastered probabilities and probabilistic bits, you are ready to learn
about quantum bits. Quantum bits are very similar to probabilistic bits – indeed, all you have
to do is replace probabilities by quantum amplitudes. This week you will learn about the states
of a quantum bit, the allowed operations, and the measurement for extracting information out
of it. You will also have a chance to try out a new quantum version of QUIRKY.

2.1 Quantum bits

Bits are the basic units of information in our current-day computers. To realize a bit, you need
a physical object that can be in one of two reliably distinguishable states, such as a coin with
two sides or a capacitor storing electric charge at two different possible voltage levels.6 The
behavior of such objects (and hence the bits they encode) can be described by physical theories
such as mechanics (for coins) or electromagnetism (for capacitors).

However, for really tiny7 objects these theories no longer apply and you have to use a more
fundamental theory called quantum mechanics. For example, an electron has a property called
spin, which (just like a coin) can take one of two values – up or down – and hence can be used
to store a bit. However, unlike a coin, electron’s spin may not be just in one of these two states
but also in a “superposition” of both! Intuitively, this is somewhat similar to a probabilistic bit
that can also be in an intermediate state between 0 and 1.

However, there is a subtle difference between probabilities and “superpositions” (see §2.6.1
on interference). As we will see, the laws of quantum mechanics lead to a much more funda-
mental notion of information than a bit – a quantum bit or qubit. To distinguish the usual bits
from their more exotic quantum friends, we will call the usual bits classical.

We will define quantum bits using a simple mathematical model and not worry about how
their strange behavior should be interpreted but instead ask the question: “What can it be used
for?”. Similarly, we will also not worry about how they can be implemented physically or what
kind of physical objects can be used to store them. However, if you are curious about this, we
briefly discuss in §2.6.2 how polarization of light can be used to represent a qubit.

2.1.1 Probabilities versus amplitudes �
Quantum bits are very similar to probabilistic bits. There are only two major differences:

1. probabilities are replaced by amplitudes (which can also be negative),

2. amplitudes are squared during the measurement (while probabilities are not).

We will explain these differences in more detail shortly, but let us first describe the possible
states of a qubit. Recall how we used the two sides of a coin to denote the two possible
deterministic states of a probabilistic bit (see Fig. 1.1)? In quantum computing, these two states
are commonly denoted by |0⟩ and |1⟩ to distinguish them from the classical bits [0] and [1]. Just
like with probabilistic bits, a general qubit state |ψ⟩ is then a linear combination or superposition
of these two deterministic states:

|ψ⟩ = ψ0 |0⟩+ ψ1 |1⟩ . (2.1)

6This is essentially the way that bits are represented in your computer, mobile phone, etc.
7By “really tiny” we mean really, really tiny! If you would put electrons next to each other in a line, the number of

electrons you would need to reach the length of 1 cm is similar to the number of pages you would need to put on
top of each other to reach the Moon.

19

https://video.uva.nl/media/0_y2xww9xm

Here, the greek letter ψ (pronounce “psi”) is the name of the qubit state (just like we named the
probabilistic bit p). The brackets |·⟩ form a so-called “ket” that indicates that we are dealing
with a quantum state. For comparison, recall from Eq. (1.3) that an arbitrary probabilistic bit
p can be written as

p = p0[0] + p1[1]. (2.2)

Note that Eq. (2.1) looks identical to this, except the probabilities p0 and p1 are replaced by
the amplitudes ψ0 and ψ1, and the classical notation [0] and [1] is replaced by the quantum
notation |0⟩ and |1⟩! However, there is one major difference: while the probabilities in Eq. (2.2)
are subject to

p0, p1 ≥ 0 and p0 + p1 = 1, (2.3)

the amplitudes are subject to
ψ2

0 + ψ2
1 = 1. (2.4)

In particular, this implies ψ2
0 ≤ 1 and ψ2

1 ≤ 1, and hence ψ0, ψ1 ∈ [−1, 1]. In contrast, the
constraints from Eq. (2.3) on probabilities imply that p0, p1 ∈ [0, 1]. The crucial difference is that
amplitudes are actually allowed to be negative while probabilities are not!8

Just like with probabilistic bits, it is convenient to represent qubit states by vectors. In
complete analogy with Eq. (1.2), we represent the deterministic qubit states |0⟩ and |1⟩ by the
two basis vectors:

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
.

A general quantum state |ψ⟩ from Eq. (2.1) is then represented as

|ψ⟩ = ψ0

(
1
0

)
+ ψ1

(
0
1

)
=

(
ψ0
ψ1

)
.

2.1.2 Qubit as a circle�

|0⟩

|1⟩

θ

|ψ(θ)⟩

cos θ

sin θ

Figure 2.1: Qubit state |ψ(θ)⟩ as a point on the unit circle.

Notice how Eq. (2.4) for qubit amplitudes is reminiscent of the equation x2 + y2 = 1 of a
circle. Let us work out this correspondence in more detail because it will help us to visualize
quantum bits and to understand them on a more intuitive level.

A convenient way to parametrize the qubit amplitudes is by letting

8In fact, amplitudes are even allowed to be so-called complex numbers. We will not need them in this course, but
you’re encouraged to browse the web to learn more about this.

20

https://video.uva.nl/media/0_1r6t8pii

ψ0 = cos θ, ψ1 = sin θ

for some angle θ ∈ [0, 2π). In fact, it will often be convenient to allow the angle θ to be
an arbitrary real number (which is fine provided we keep in mind that any two angles that
differ by 2π result in the same amplitudes). Since cos2 θ + sin2 θ = 1, we are guaranteed to
automatically satisfy Eq. (2.4). With this choice, a general qubit state looks as follows:

|ψ(θ)⟩ = cos θ |0⟩+ sin θ |1⟩ =
(

cos θ
sin θ

)
. (2.5)

One can visualize this as a unit vector in two dimensions that starts at the origin of the
plane and has angle θ with the horizontal |0⟩ axis (see Fig. 2.1). In particular, |0⟩ = |ψ(0)⟩
and |1⟩ =

∣∣ψ(π
2)
〉
. The set of all qubit states then correspond to a unit circle centered at the

origin. In contrast, recall from Fig. 1.2 that the set of all states of a probabilistic bit is a line
segment connecting the points

(
1
0

)
and

(
0
1

)
located on the two coordinate axes. The two sets

are compared in Fig. 2.2.

|0⟩

|1⟩

Probabilistic bitQuantum bit

Figure 2.2: State spaces of a probabilistic bit (blue) and quantum bit (red).

Exercise 2.1: States on the circle
Consider the following two states of a qubit:

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

.

Where do these two states lie on the circle? What angles θ do they correspond to?

2.2 Measuring a quantum bit �
We now know that any qubit state is of the form |ψ(θ)⟩. Let’s say you get your hands on a state
|ψ(θ)⟩ and you would like to know the value of θ. Unfortunately, quantum mechanics does not
allow you to learn it! This seems like a big problem – what is a quantum computer good for if
you cannot get out the answer? Well, not so fast! Recall from Eq. (1.18) that the same was true
for probabilistic bits as well – if you measure a probabilistic bit with distribution

(p0
p1

)
, you do

not learn p0 or p1. All you get is a single bit of information: 0 with probability p0 and 1 with
probability p1.

The quantum measurement is very similar and is described by what is known as Born rule.
If you have a qubit in state

(ψ0
ψ1

)
= ψ0 |0⟩+ ψ1 |1⟩ and you measure it, you also obtain just a

single bit: you get 0 or 1 with probabilities

21

https://video.uva.nl/media/0_ipllht64

p0 = ψ2
0, p1 = ψ2

1. (2.6)

While the square might seem surprising, note that p0 + p1 = ψ2
0 + ψ2

1 = 1. Thus, the square
is precisely what guarantees that

(p0
p1

)
is a valid probability distribution, so the above rule

makes sense! After the measurement, the qubit is gone and all you are left with is a single bit
containing the measurement outcome you observed. In other words, the measurement process
converts a qubit into a regular bit whose value is determined probabilistically by Eq. (2.6):

ψ0 |0⟩+ ψ1 |1⟩

[0] [1]

ψ2
0 ψ2

1

(2.7)

As you can see from Eqs. (1.18) and (2.7), the measurement rule for probabilistic bits and
qubits is very similar. In both cases, the original state is gone and all you are left with is a single
bit whose value depends probabilistically on the original state you measured. (In particular,
if you measure the state more than once then you will always get the same outcome as the
first time – so repeated measurements do not give any additional information about what the
original state was.) The only difference is that for qubits you need to square the amplitudes
to get the probabilities, as in Eq. (2.6), while for probabilistic bits you get them directly and
hence don’t need to square anything. While this may seem like a small difference, it does have
significant impact on the allowed states, as the amplitudes of a qubit are allowed to be negative
whilst the probabilities of a probabilistic bit are always positive (see Fig. 2.2).

Well, actually there is another, even more subtle difference. Namely, that nobody can predict
the outcome of a quantum measurement in advance. This is subtle because it seems that the
same should be true also for probabilistic bits. What is the difference? In short, the answer
is that probabilistic bits appear random because of our lack of knowledge about their state,
while quantum bits are random even if we know all there is to know about their state. For
example, imagine that your friend tosses a fair coin and immediately covers it once it lands. You
would normally describe the state of such coin as uniformly random, see Eq. (1.15). However, if
you were filming the coin with a high-speed camera, you might be able to accurately predict
on which side it landed from your footage. In this sense, the randomness of probabilistic
bits has to do with our ignorance. For quantum bits, however, randomness arises on a more
fundamental level. Whatever prior knowledge we may have, it is in general impossible to
perfectly predict the outcome of a quantum measurement. On the flipside, this means that the
outcomes of quantum measurements can be used as a good source of randomness!

Homework 2.1: Generating a random bit quantumly

Problem: Alice’s donkey robot is running low
on power again and needs to find its way to a
charging station. Unfortunately, this time Eve’s
hacking skills have improved – she has figured
out how to hack the donkey’s random number
generator and reprogram it so that it generates
any sequence of numbers she wants! Luckily, Al-
ice is aware of this since Eve bragged about it on
a hacker forum recently. To counteract Eve’s evil
plan, Alice decided to install a miniature single-

22

qubit quantum computer inside her donkey robot.
Using the inherent unpredictability of quantum
measurement outcomes, Alice wants to generate

uniformly random bits that Eve cannot guess.

Question: Alice is able to produce any qubit state |ψ(θ)⟩, and she wants to generate a
uniformly random bit by measuring it.

1. When measuring the state |ψ(θ)⟩, what is the probability to get measurement out-
come 0? What is the probability for measurement outcome 1?

2. Alice wants to find an angle θ such that both probabilities equal 1/2. What θ should
she choose? (There might be more than one option!)

2.3 Simulating quantum bits with QUIRKY

The laws of quantum computing are quite strange and most of us don’t have a quantum
computer to experiment with. Fortunately, QUIRKY has gained new powers since last week and
now allows us to simulate a quantum bit!9 To begin, go to:

https://www.quantum-quest.org/quirky

and click on “Quest 2”. Your web browser will look similarly to Fig. 2.3.

Figure 2.3: QUIRKY for Quest 2.

The key difference to last week that the ‘wire’ now corresponds to a quantum bit, which is
initialized in the state |0⟩.

9Why do we want to build quantum computers at all if we can simulate them so nicely on existing computers?
The reason is that while simulators like QUIRKY work well when all you have is a handful of of quantum bits, they
quickly break down as the number of quantum bits increases. We will see why this is so on page 74 in §4.

23

https://www.quantum-quest.org/quirky
https://www.quantum-quest.org/quirky/QuirkyQuest2.html

Just like last week, the toolbox contains operations that we can apply by dragging and dropping
them from the toolbox onto the wire:

The first box,The first box, , allows us to measure a quantum bit. Let us go ahead and build the
following simple quantum computation in QUIRKY:

You will notice that upon the single line turned into a double line. In QUIRKY, single lines refer
to quantum bits, and double lines refer to ordinary or ‘classical’ bits. Indeed, we know from
§2.2 that when we measure a quantum bit we get an outcome that is either zero or one with
some probabilities, that is, a probabilistic bit.

24

, allows us to measure a quantum bit. Let us go ahead and build the
following simple quantum computation in QUIRKY:

You will notice that upon the single line turned into a double line. In QUIRKY, single lines refer
to quantum bits, and double lines refer to ordinary or ‘classical’ bits. Indeed, we know from
§2.2 that when we measure a quantum bit we get an outcome that is either zero or one with
some probabilities, that is, a probabilistic bit.

To view the probabilities of outcomes, we can use the probability display Prob that we
already know from last week. Let’s add it to our computation and see what happens:

It looks like that the measurement outcome will be ‘zero’ 100% of the time (hover the box with
your mouse to confirm our suspicion). Of course, this is precisely what we expect. When we
measure |0⟩, the outcome will always be ‘zero’ according to the measurement rules in Eq. (2.7).

In the remainder of this chapter we will discuss the other boxes in the toolbox.

2.4 Operations on a quantum bit�
Before we measure a state we might want to do some operation on it. But what kind of
operations can we do on a qubit? For example, when we start our quantum computer, its
quantum bit will always be in state |0⟩, so we need to apply an operation to create some
interesting state |ψ(θ)⟩. Whatever the operation is, it should produce another qubit state as an
output. In other words, it should map the qubit state space to itself. Recall from Fig. 2.1 that this
state space corresponds to a circle, so we are looking for ways of mapping the circle to itself.

Let us first consider the NOT operation, which we can define in exactly the same way as in
Eq. (1.9) for probabilistic bits:

NOT |0⟩ = |1⟩ , NOT |1⟩ = |0⟩ .

How can we extend NOT to arbitrary qubit states? Just like we did for probabilistic bits in
§1.2.1, we will use the idea of linearity. If an operation M is defined on |0⟩ and |1⟩ then we can
define it on an arbitrary qubit state by

M
(

ψ0 |0⟩+ ψ1 |1⟩
)
= ψ0 M |0⟩+ ψ1 M |1⟩ . (2.8)

We can also write out Eq. (2.8) explicitly using the vector notation:

M
(

ψ0
ψ1

)
= M

(
ψ0

(
1
0

)
+ ψ1

(
0
1

))
= ψ0 M

(
1
0

)
+ ψ1 M

(
0
1

)
. (2.9)

As mentioned earlier, in mathematics an operation M that satisfies this condition is called linear,
and extending an operation in this way is called extending “by linearity”. The key point is that

24

https://www.quantum-quest.org/quirky/QuirkyQuest2.html#circuit=%7B%22cols%22%3A%5B%5B%22Measure%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest2.html#circuit=%7B%22cols%22%3A%5B%5B%22Measure%22%5D%2C%5B%22Chance1%22%5D%5D%7D
https://video.uva.nl/media/0_3x1xvk17

if M is linear and we know how it acts on |0⟩ and on |1⟩, we can deduce how it acts on arbitrary
qubit states!

In Eq. (2.8), we only considered the vectors |0⟩ and |1⟩. However it is more generally true
that

M
(

a |ψ⟩+ b |ϕ⟩
)
= a M |ψ⟩+ b M |ϕ⟩ (2.10)

for arbitrary vectors |ψ⟩, |ϕ⟩ and numbers a, b. Can you see how (2.10) follows from (2.8)?
The laws of quantum mechanics guarantee that any linear operation M is a possible qubit

operation – provided it sends the entire qubit state space to itself! By this we mean that every
qubit state (point on the circle) is mapped to some qubit state (point on the circle).

In the case of the NOT operation, the result of extending by linearity is

NOT
(

ψ0 |0⟩+ ψ1 |1⟩
)
= ψ0 |1⟩+ ψ1 |0⟩ , or NOT

(
ψ0
ψ1

)
=

(
ψ1
ψ0

)
. (2.11)

Note that Eqs. (2.8), (2.9) and (2.11) look exactly like Eqs. (1.10) and (1.12) – except that now ψ0
and ψ1 can also be negative. In terms of Fig. 2.2, the NOT operation amounts to a reflection
about the 45 degree axis (this is true also for probabilistic bits). This is visualized in Fig. 2.4.
Clearly, NOT maps the qubit state space (circle) to itself. Thus, the NOT operation is a valid
operation on a quantum bit.

|0⟩

|1⟩

Figure 2.4: The NOT operation on a qubit, defined in Eq. (2.11), amounts to a reflection about
the 45 degree (or π/4) axis (dotted).

In QUIRKY, the NOT operation on qubits looks like just like the NOT operation on bits,
namely

⊕
. Try now to build the following quantum computation:

Now it looks like the measurement outcome will be ‘one’ 100% of the time. Indeed, the initial
|0⟩ gets transformed to a |1⟩ state by the NOT operation, so that the outcome will always be
‘one’ according to the measurement rules in Eq. (2.7).

We can similarly define qubit operations by considering reflections through other axes. For
example, the Z operation defined by

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ , (2.12)

25

https://www.quantum-quest.org/quirky/QuirkyQuest2.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%5D%2C%5B%22Measure%22%5D%2C%5B%22Chance1%22%5D%5D%7D

corresponds to a reflection about the horizontal |0⟩-axis. Indeed, if we extend Z by linearity
then it acts on an arbitrary qubit state as

Z
(

ψ0
ψ1

)
=

(
ψ0
−ψ1

)
,

which certainly maps qubit states to qubit states.

Homework 2.2: Z operation

Consider the following two states of a qubit:

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

.

1. Compute Z |+⟩ and Z |−⟩.

2. Visualize the Z-operation graphically on the circle, as in Fig. 2.4.

Exercise 2.2: Linearity is not enough (optional)

Consider the operation MAD obtained by extending MAD |0⟩ = |0⟩ and MAD |1⟩ =
1√
2
(|0⟩+ |1⟩) by linearity. Find a state |ψ⟩ such that MAD |ψ⟩ is not a valid qubit state.

Thus, MAD is not a valid operation on qubits!

2.4.1 Rotations�
So far, we only know how to create the |0⟩ and |1⟩ states using QUIRKY. Quantum computing
would not be much fun if those were our only options! To create more interesting states, we
need to come up with other quantum operations.

One natural such operation is to rotate the circle by some fixed angle. Let us denote the
rotation by an angle θ by U(θ). You can always assume that the angle is in [0, 2π). Since
|0⟩ = |ψ(0)⟩ and |1⟩ =

∣∣ψ(π
2)
〉
, this operation acts on the basis vectors as follows (see Fig. 2.5):

U(θ) |0⟩ = |ψ(θ)⟩ , U(θ) |1⟩ =
∣∣ψ(θ + π

2)
〉

. (2.13)

We can also write out this definition explicitly in the vector notation:

U(θ)

(
1
0

)
=

(
cos θ
sin θ

)
, U(θ)

(
0
1

)
=

(− sin θ
cos θ

)
, (2.14)

where we used cos(θ + π
2) = − sin θ and sin(θ + π

2) = cos θ.
As before, we will use linearity to extend U(θ) from the basis vectors to arbitrary qubit

states. In the following exercise, you will show that the resulting operation U(θ) indeed acts as
a rotation on qubit states. In particular, this means that it sends qubit states to qubit states, so
U(θ) is an allowed operation on qubits!

Exercise 2.3: Qubit rotation

1. Compute U(α)

(
ψ0
ψ1

)
by using Eqs. (2.8) and (2.13).

2. Use the definition of |ψ(θ)⟩ in Eq. (2.5) to verify that, for all angles α and β,

U(α) |ψ(β)⟩ = |ψ(α + β)⟩ . (2.15)

This means that U(θ) acts as a rotation on arbitrary qubit states |ψ(β)⟩.

26

https://video.uva.nl/media/0_x34eotxg

|0⟩

|1⟩

θ

θ
|ψ(θ)⟩

∣∣ψ(θ + π
2)
〉

Figure 2.5: States |0⟩ and |1⟩ rotated by angle θ, see Eq. (2.13).

Hint: The trigonometric angle sum and difference formulas might be useful:

sin(α± β) = sin α cos β± cos α sin β, cos(α± β) = cos α cos β∓ sin α sin β. (2.16)

Note that a rotation by 90 degrees (i.e., π/2) is not the same as a reflection. Indeed, while
both the NOT operation and the U(π/2) rotation send |0⟩ to |1⟩, they act differently on |1⟩:

NOT |1⟩ = |0⟩ , U(π/2) |1⟩ = − |0⟩ .

How can we rotate a quantum bit in QUIRKY? Since there are infinitely many rotations
operations U(θ), we could not add them all to the toolbox. Instead, you can add your own
rotations to the toolbox! Let’s practice by adding a rotation by 30◦. To start, select ‘Make U(θ)’
in the menu bar. A new window appears where you can input an angle:

Enter pi/6, which corresponds to 30◦, and confirm by pressing the button. Congratulations!
You have successfully added the U(π/6) rotation to the toolbox, which now looks as follows:

To test our new rotation, let us build the following computation in QUIRKY:

Let’s quickly see that this outcome makes sense. We started with the |0⟩ = (1
0) state. By

Eq. (2.14), any rotation U(θ) sends |0⟩ to |ψ(θ)⟩ = (
cos(θ)
sin(θ)). In our case θ = π/6, and

|ψ(π/6)⟩ =
(

cos(π/6)
sin(π/6)

)
=

(√
3/2

1/2

)
.

27

https://www.quantum-quest.org/quirky/QuirkyQuest2.html#circuit=%7B%22cols%22%3A%5B%5B%22~dea5%22%5D%2C%5B%22Measure%22%5D%2C%5B%22Chance1%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~dea5%22%2C%22name%22%3A%22U(pi%2F6)%22%2C%22matrix%22%3A%22%7B%7B0.8660254%2C-0.5%7D%2C%7B0.5%2C0.8660254%7D%7D%22%7D%5D%7D

Using the quantum measurement rule in Eq. (2.7), we conclude that the probability of obtaining
outcome 1 is

p1 =

(
1
2

)2

=
1
4
= 25%,

which is exactly what QUIRKY told us. In the following exercise you will use QUIRKY to
similarly test the effect of the rotation U(θ) on the other basis vector, |1⟩.

Homework 2.3: Testing the 30◦ rotation

1. Build the following sequence of operations using QUIRKY: First prepare the qubit
state |1⟩, then rotate by the same angle π/6, and finally measure the qubit.

2. Use the probability display in QUIRKY to determine the probability of the measure-
ment outcomes. Argue that the answer given by QUIRKY is correct.

3. Modify your solution to the first question such that the probability of measurement
outcome zero is 42 percent.

2.4.2 Composing quantum operations�
We can always compose two given qubit operations M and N to obtain a new qubit operation.
Indeed, if |ψ⟩ is the input state and we first apply M, we get M(|ψ⟩) = M |ψ⟩. If we then apply
N, resulting state is N(M |ψ⟩). We will denote this composite operation by NM, so that

NM |ψ⟩ = N(M |ψ⟩).

Be careful not to confuse the order of the two operations. If the composite operation is NM, this
means that M is applied first and N is applied second! This is because M stands next to |ψ⟩, so
it must be the first one to act on the state.

Exercise 2.4: Linearity of a composed operation (optional)

Verify that NM is again linear.

Hint: Use Eq. (2.10).

We can similarly compose three and more qubit operations. We will write ONM and so on.
In particular, we may obtain new qubit operations by composing rotations and reflections. We
will discuss this in §2.4.3 below.

It is interesting to observe that all qubit operations that we discussed so far are invertible.
This means that for any operation M there exists another operation, which we write as M−1,
such that when we first apply M and then M−1 (or the other way around) the state of the qubit
is unchanged. 10 In formulas, we can write

M−1M = MM−1 = I, (2.17)

where I is the identity operation which has the “trivial” property

I |0⟩ = |0⟩ , I |1⟩ = |1⟩ (2.18)

(We could have also defined I as U(0), the rotation by an angle of zero.) Therefore I |ψ⟩ = |ψ⟩
holds for any state |ψ⟩ when extended by linearity.

10This notation and Eq. (2.17) will remind you of the following: If x is a nonzero number then x−1 = 1
x is its

inverse, which means that xx−1 = x−1x = 1.

28

https://video.uva.nl/media/0_yzen3mqn

As an example, let’s look at the operation U. It is geometrically clear that if we first rotate by
β and then by −β then the quantum bit is unchanged. To see this more formally, we only need
to use Eq. (2.15) twice:

U(−β)U(β) |ψ(α)⟩ = U(−β) |ψ(α + β)⟩ = |ψ(α + β− β)⟩ = |ψ(α)⟩

and similarly if we first rotate by −β and then by β. This means that the inverse operation
U(β)−1 is simply U(−β):

U(β)−1 = U(−β).

Similarly, since the NOT operation amounts to a reflection, it is clear that applying it twice
leaves the qubit state invariant. Indeed, from Eq. (1.9)

NOT NOT |0⟩ = NOT |1⟩ = |0⟩ and NOT NOT |1⟩ = NOT |0⟩ = |1⟩ .

By linearity, this means that NOT NOT |ψ⟩ = |ψ⟩ for any state |ψ⟩, so NOT is not only invertible
but its own inverse, i.e., NOT−1 = NOT.

Exercise 2.5: Inverse of a composed operation

Show that if M and N are invertible then so is NM. Express the inverse (NM)−1 of the
composed operation in terms of the individual inverses N−1 and M−1.

In fact, one can show that any linear operation that sends the qubit state space to itself is
necessarily invertible. Indeed, this is the case for rotations U(θ) and will also be the case for
reflections V(θ) that we will discuss next. This is in contrast to operations on probabilistic
bits where, for example, the probabilistic flip operation F(1/2) maps any state to the uniform
distribution

(1/2
1/2

)
(see Exercise 1.6) and hence is not invertible.

2.4.3 Reflections �
Any qubit operation is either a rotation or a reflection. We are already familiar with the
most general rotation, U(θ), defined in Eq. (2.13). However, in terms of reflections we have
encountered only two of them so far: Z and NOT, see Eqs. (2.11) and (2.12). But what does the
most general reflection look like?

One way of obtaining any reflection is by taking some fixed reflection (say, the NOT reflec-
tion) and composing it with suitable rotations so that the axis of the reflection is adjusted by the
right amount. In the following exercise, you will show how to obtain the Z reflection from the
NOT reflection in two different ways.

Homework 2.4: Z from NOT
Let Z, NOT, and U(θ) be the qubit operations defined in Eqs. (2.11) to (2.13).

1. Find an angle θ such that Z = U(θ)NOT U(−θ).

2. Find an angle θ such that Z = NOT U(θ).

Can you visualize these two sequences of transformations on the circle?

Hint: Take a look at Fig. 2.4 and the figure you drew for Homework 2.2.

It turns out that you can in fact obtain any reflection by using a similar trick. The most
general reflection is of the form

V(θ) = NOT U(θ) = U(−θ)NOT. (2.19)

29

https://video.uva.nl/media/0_l7p6qt0e

For example, a very useful operation is the Hadamard transformation that acts on the basis
states as follows (see Fig. 2.6):

H |0⟩ = 1√
2
(|0⟩+ |1⟩) = |+⟩ , H |1⟩ = 1√

2
(|0⟩ − |1⟩) = |−⟩ . (2.20)

It is obtained as the following special case of the general reflection:

H = V(π/4). (2.21)

In summary, any qubit operation is either a rotation U(θ) or a reflection V(θ), for some angle
θ.

|0⟩

|1⟩

|+⟩

|−⟩

Figure 2.6: The Hadamard operation H on a qubit amounts to a reflection about the 45/2
degree (or π/8) axis (dotted). Depicted are also the states |0⟩, |1⟩, |+⟩, and |−⟩ from Eq. (2.20).

2.5 Distinguishing quantum states

Alice is watching a running competition for robot donkeys, and she notes down whether her
favourite donkey wins: a 1 when this happens, and a 0 otherwise. She could also encode this
information into a qubit: in the most general case, she prepares the state |ψ(θ0)⟩ in situation 0
(no win), or a state |ψ(θ1)⟩ in the case 1 (her favourite donkey wins). Alice can make these states
by simply applying U(θ0) or U(θ1) to |0⟩, as in Eq. (2.13). Now, assume Alice gives this qubit to
Bob. Can Bob guess what bit value (0 or 1) was encoded, based purely on this one qubit? Would
Bob’s odds improve if he can first perform a rotation or reflection? You can practice this idea in
the following exercise.

Exercise 2.6: Plus and minus
Imagine that you are given a qubit that is one of the following two states:

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

.

You want to guess which state it is. You can apply some rotation and then measure. What
rotation should you apply and with what probability can you guess the correct state?

If you want to represent different bit values by different quantum states, you should be
careful to not use |ψ(θ)⟩ and |ψ(θ + π)⟩ since these states cannot be distinguished.

30

Exercise 2.7: Indistinguishable states

Show that the two states |ψ(θ)⟩ and |ψ(θ + π)⟩ = − |ψ(θ)⟩ cannot be distinguished in any
way. That is, no matter what qubit operation you apply and then measure the resulting
state, the measurement outcomes in both cases will always have the same probabilities.

It is quite interesting to compare Exercises 2.6 and 2.7. When two states differ by an
overall minus sign, they are completely indistinguishable, as in Exercise 2.7. For all practical
purposes, the two vectors ± |ψ(θ)⟩ describe the same state. In contrast, ‘relative’ minus signs as
in Exercise 2.6 are important and can even lead to states that can be perfectly distinguished!

In the following homework problem you can figure out the optimal way of distinguishing
two arbitrary quantum states.

Homework 2.5: Telling two states apart

Let θ, θ′ be two angles. For simplicity, assume that −π
2 ≤ θ ≤ θ′ ≤ π

2 . Suppose that Eve
hands you a single qubit, either in state |ψ(θ)⟩ or in state |ψ(θ′)⟩, with 50% probability each.
(For example, she could toss a fair coin to decide which of the two states to give to you.)
Your task is to identify which of the two states you received. In a few steps you will find an
optimal procedure:

1. First apply a rotation U(ϕ) by some angle ϕ. Which two possible states will you
obtain?

2. Next, measure the qubit and interpret the outcome as follows: If the outcome is 0 then
your guess is that you were handed the state |ψ(θ)⟩, otherwise your guess is |ψ(θ′)⟩.
What is the probability of correctly identifying the state that was given to you? Write
down a formula in terms of θ, θ′ and ϕ.

Hint: First compute the success probability assuming you are given the first state, then
the success probability assuming you are given the second state, and then remember
that in reality you get one of the two states with 50% probability each.

3. You still have the freedom of choosing the rotation angle ϕ in a clever way. What is
the success probability as a function of θ and θ′ if you choose ϕ optimally?

Hint: Try using the trigonometric identities from Eq. (2.16). In particular, from these
you can show that

sin2 α =
1
2
(
1− cos(2α)

)
, cos2 α =

1
2
(
1 + cos(2α)

)
. (2.22)

If you are stuck, you can also use Wolfram Alpha.

Exercise 2.8: Broken leg and arm (challenging)

Problem: Alice and Bob like to explore the wilderness
surrounding their town. For this purpose they have built
two large gorilla robots that can navigate through rough
terrain while carrying them comfortably on their backs.
This is not a good day for Bob since his robot accidentally
falls off a cliff! Luckily, Bob survives the fall with only
a few bruises, but his robot gets damaged pretty badly:
one arm, one leg, and its communications device are all
broken. Bob does not have any spare parts for legs and
arms, but at least he manages to fix his communications

31

https://www.wolframalpha.com

device for a brief moment. Unfortunately, it can send
only one bit or one qubit and then stop working. Bob
would like to communicate to Alice which leg (left or
right) and which arm (also, left or right) of his robot is broken so that she could take off
the corresponding one from her robot and send it down to him. Alice can send him just
one limb (either leg or arm) because both robots need to be able to walk back home (which
they can still do on three limbs). The situation is made more complicated by the fact that
Alice does not have all the required tools for removing an arbitrary limb from her robot.
Bob recalls that Alice took with her either the tools for legs or for arms (and not both), but
he cannot remember which.

There are four possible combinations of which leg and which arm of Bob’s robot broke –
you can assume that each of them happened with probability 1/4. Similarly, there are two
types of limbs Alice can remove from her robot (she has either tools for removing legs or
arms) and you can assume that she took the right tools for each with probability 1/2.

Questions:

1. If Bob can send only one bit to Alice, how should he decide on its value depending on
which of the four ways his robot could be broken? How should Alice interpret his
message and decide on whether to send the left or the right limb? (Recall that Alice
can send only legs or only arms, and Bob does not know whether it is legs or arms.)
If they both use an optimal strategy, with what probability will Alice interpret Bob’s
message correctly and send the right limb for his robot?

2. What if Bob can instead send one quantum bit? Depending on his situation, he can
choose one of four states and, depending on her situation, Alice can apply one of
two rotations before measuring it. What is their optimal joint strategy and with what
probability does it succeed?

You can assume that Alice and Bob know how to interpret each other’s messages, since they
have discussed beforehand what to do if this particular emergency situation ever happens.

2.5.1 Another mysterious operation

We still have not discussed the yellow box in QUIRKY. Unlike last week’s mystery operation,
which operated on bits, this week’s mystery box operates on quantum bits. Let us call this
mysterious quantum operation M. How can we figure what is going on inside the box? As a
first step, let us consider the problem of determining M |0⟩. In QUIRKY, we can create this state
by the following setup:

The problem of determining an unknown state is called quantum state tomography, since we
want to reconstruct an unknown quantum state ‘from the outside’, by performing various
measurements. It is a fundamental task that experimentalists are faced with every day, when
they want to make sure that quantum state that they prepared in the laboratory is the state that
they intended to create!

We can already get substantial information by performing a measurement operation on the
unknown state. To see this, let us write

M |0⟩ =
(

ψ0
ψ1

)
.

32

https://www.quantum-quest.org/quirky/QuirkyQuest2.html#circuit=%7B%22cols%22%3A%5B%5B%22Mystery%22%5D%5D%7D

If we perform a measurement then by Eq. (2.6) we obtain outcome 1 with probability ψ2
1. What

this means is that if we repeat the above experiment a large number of times then we would
expect that the fraction of times that we obtain outcome 1 is roughly ψ2

1. This is completely
analogously to how one can estimate a coin by tossing it many times and counting the number
of heads and tails, as we discussed last week in §1.3. This provides us with a procedure for
estimating ψ2

1. In QUIRKY, we can simply use the probability display after the measurement to
determine the probability of outcome 1:

Thus, we find that ψ2
1 ≈ 11.7%. Since M |0⟩ is a unit vector, we can also infer that ψ2

0 = 1− ψ2
1 ≈

88.3%. However, amplitudes can be negative, so this only determines ψ0 and ψ1 up to signs!
Now, remember from Exercise 2.7 that |ψ⟩ and − |ψ⟩ are indistinguishable, so we can only hope
to determine |ψ⟩ = M |0⟩ up to an overall sign. Thus, we are left with two possibilities:

±
(√

88.3%√
11.7%

)
, ±

(√
88.3%

−
√

11.7%

)
Note that this situation is very similar to Exercise 2.6, where we had to decide between |+⟩
and |−⟩. In the last homework problem, you will clarify the situation and reveal the inner
workings of the mystery box.

Homework 2.6: Mystery time

1. How can you decide which of the two options is the case? Use QUIRKY to determine
the quantum state M |0⟩ up to sign.

2. Similarly, determine the quantum state M |1⟩ up to sign.

3. Bonus question: Do steps 1 and 2 specify the quantum operation M completely? If yes,
write down a formula for M. If not, how can you learn M?

2.6 Interlude on physics (optional)

Our main focus in The Quantum Quest is on the mathematics of quantum computing. However,
since small quantum computers have already been built in laboratories around the world, it is
also useful to know a little bit about the physics of quantum computing. What kind of physical
effects make the quantum computers work?

2.6.1 Interference

One of the most important physical effects used in quantum computing is interference – the
interaction between overlapping waves or oscillations. One way you can observe interference
is by looking at water waves created by two boats that are passing each other by, or by si-
multaneously throwing two rocks in a still lake. When the waves amplify each other, we call
the interference constructive, and when they cancel each other out, we call it destructive (see
Fig. 2.7).

Interference also occurs in other contexts, for example with sound waves. A familiar
example might be the destructive interference in noise-cancelling headphones. They operate by
capturing the background noise and playing it back to you, but with an opposite direction of
oscillation. When this recorded sound overlaps with the original noise, they cancel each other
out: 1− 1 = 0. If the headphones would not invert the direction of oscillation but instead play

33

https://www.quantum-quest.org/quirky/QuirkyQuest2.html#circuit=%7B%22cols%22%3A%5B%5B%22Mystery%22%5D%2C%5B%22Measure%22%5D%2C%5B%22Chance1%22%5D%5D%7D

Constructive
interference

Destructive
interference

Figure 2.7: Interference of two waves: at every location the amplitudes of the blue and
orange wave add to produce the green wave. When both amplitudes have the same sign,
the interference is constructive and we get an even larger amplitude. When the interfering
amplitudes have different signs, the interference is destructive and we get a much smaller
amplitude.

the sound back to you as it is, you would hear a much louder noise: 1 + 1 = 2. This would turn
your headphones into a hearing aid!

An important way in which quantum computation differs from probabilistic computation is
that it can make use of both types of interference – constructive and destructive – while proba-
bilistic computation can use only constructive interference. To illustrate this mathematically,
recall the probabilistic flip operation F(1/2) and the Hadamard operation H from Eqs. (1.14)
and (2.20):

F(1/2) [0] =
1
2
[0] +

1
2
[1], H |0⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ ,

F(1/2) [1] =
1
2
[0] +

1
2
[1], H |1⟩ = 1√

2
|0⟩ − 1√

2
|1⟩ . (2.23)

Apart from the square roots, the two operations are almost identical. However, notice that
F(1/2) [1] has a plus sign while H |1⟩ has a minus sign. This may seem like a small difference
but it can have big consequences.

Let us consider the action of these two operations on the uniform distribution 1
2 [0] +

1
2 [1]

and its quantum analogue, the plus state |+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩. The probabilistic flip operation

F(1/2) acts on the uniform distribution as follows:

F(1/2)
(

1
2
[0] +

1
2
[1]
)
=

1
2

F(1/2) [0] +
1
2

F(1/2) [1]

=
1
2

(
1
2
[0] +

1
2
[1]
)
+

1
2

(
1
2
[0] +

1
2
[1]
)

=

(
1
2
· 1

2
+

1
2
· 1

2

)
[0] +

(
1
2
· 1

2
+

1
2
· 1

2

)
[1]

=
1
2
[0] +

1
2
[1],

where we used linearity, Eq. (2.23), and collected the probabilities at states [0] and [1]. Note
how the probabilities at [1] from both terms amplify each other, resulting in the final probability
of 1/2. This is very intuitive: if you flip a uniformly random bit then it stays uniformly random.

34

However, consider now the action of the Hadamard operation H on the plus state |+⟩:

H
(

1√
2
|0⟩+ 1√

2
|1⟩
)
=

1√
2

H |0⟩+ 1√
2

H |1⟩

=
1√
2

(
1√
2
|0⟩+ 1√

2
|1⟩
)
+

1√
2

(
1√
2
|0⟩ − 1√

2
|1⟩
)

=

(
1√
2
· 1√

2
+

1√
2
· 1√

2

)
|0⟩+

(
1√
2
· 1√

2
− 1√

2
· 1√

2

)
|1⟩

= |0⟩ .

The calculation is almost identical but the outcome is very different – the amplitudes at |1⟩
completely cancel each other and we are left only with |0⟩. Such destructive interference is
impossible with probabilistic bits because probabilities are always positive – they can only
amplify each other but can never cancel.

While probabilistic and quantum bits are quite similar, this example illustrates how they
can behave differently thanks to destructive interference. Many of the quantum surprises
that you will encounter in further weeks are in some way a consequence of this phenomenon.
The ability to perform destructive interference is exactly what gives a quantum computer an
advantage over classical computers – it allows the quantum computer to output just the right
answer, while the wrong answers are cancelled out by destructive interference. As we will
see in more detail in §5.2, this is often achieved by the Hadamard gate, which therefore plays a
central role in many quantum algorithms.

2.6.2 Polarization

Now that we are mathematically familiar with qubit states and operations, it would be nice to
connect them with something physical.

One of the simplest ways of representing a qubit physically is by polarization of light. Light
is an electromagnetic wave that propagates through space in a straight line. This wave oscillates
in a direction perpendicular to one in which it travels. Note that there are several possible such
directions – a wave that travels forward can oscillate from left to right or from top to bottom.
These horizontal and vertical modes of oscillation can be used to represent the two basis states
of a qubit:

|↔⟩ =
(

1
0

)
, |↕⟩ =

(
0
1

)
.

More generally, we can use a wave that oscillates at an angle θ with the horizontal axis to
represent the state

|ψ(θ)⟩ = cos θ |↔⟩+ sin θ |↕⟩ =
(

cos θ
sin θ

)
.

For example, diagonally polarized light that oscillates at 45◦ angle between the vertical and
horizontal directions represents the state |ψ(π/4)⟩ = |+⟩. Note that in this representation the
direction of oscillation of the electromagnetic wave agrees with the direction of the vector we
used in Fig. 2.1 of §2.1.2 to represent a qubit state on a circle.

To prepare one of these states, we can simply pass a beam of light through a polarizer,
like the one in your sunglasses or in 3D glasses at the cinema. A polarizer lets through only
some part of the wave – that whose direction of oscillation is compatible with the direction of
the polarizer. To prepare the state |ψ(θ)⟩, we can simply tilt the polarizer at angle θ from the
horizontal axis. For example, Fig. 2.8 depicts how to prepare the states |0⟩, |1⟩, and |+⟩.

An interesting feature of representing qubit states by polarized light is that the states |ψ(θ)⟩
and |ψ(θ + π)⟩ are prepared using the same procedure – tilting the polarizer at an angle θ. This

35

|0⟩

|1⟩

|0⟩

|1⟩

|0⟩

|1⟩
|+⟩

Figure 2.8: Horizontally, vertically, and diagonally polarized light can be used to represent the
qubit states |0⟩, |1⟩, and |+⟩.

100% 0% 50%

Figure 2.9: The amount of horizontal polarization in light can be determined by passing it
through a horizontal polarizer and then measuring its brightness. For horizontally, vertically,
and diagonally polarized light this results in 100%, 0%, and 50% brightness, which coincide
with the probabilities of observing outcome 0 when measuring the states |0⟩, |1⟩, and |+⟩.

means that these two states must be identical! Hence polarization gives an intuitive explanation
for why the states |ψ⟩ and − |ψ⟩ should be indistinguishable (see Exercise 2.7).

Another nice feature of viewing qubits as polarized light is that we can easily visualize
measurement. Assume we want to measure the state |ψ(θ)⟩ to determine the probability of the
outcome 0. If the state is provided to us as a beam of light, polarized at angle θ, we can simply
pass it through a horizontal polarizer and see how much light gets through – if the brightness
has decreased to 70%, the probability of outcome 0 is 70%. In particular, if the input beam was
horizontally polarized, all of it will get through, while if it was vertically polarized, none of it
will get through. Passing a diagonally polarized beam of light through a horizontal polarizer
will result in a 50% decrease in brightness (see Fig. 2.9).

Exercise 2.9: Polarization experiment

If you happen to have a pair of polarized sunglasses at home, you can put them on and
take a look at the screen of your phone or computer. Usually screens emit polarized light
(whose direction of polarization depends on device). When you tilt your head sideways,
you should see the screen becoming lighter or darker. Can you explain why this is the case?

Polarization of light is just one example of how a qubit could be implemented in laboratory.
Another example is the location of the light-carrying particle called photon – since a photon
behaves according to the laws of quantum mechanics, it can simultaneously be at two locations
in superposition. If we call these locations 0 and 1, the photon’s state corresponds to a qubit.
There are many other options: the current in a superconducting circuit can simultaneously flow
in both directions, an electron can simultaneously occupy two orbitals around an atom, and so
on. In short, any quantum mechanical system that can be in two distinct states can also be in
their superposition, hence it can potentially be used as a physical representation of a qubit.

36

2.7 Exercise solutions

Solution to Exercise 2.1
Note that

|+⟩ = 1√
2

(
1
1

)
= |ψ(π/4)⟩ , |−⟩ = 1√

2

(
1
−1

)
= |ψ(−π/4)⟩ .

Thus the angles are θ = ±π/4, and the two states are located 45 degrees upwards and
downwards from |0⟩, respectively.

Solution to Exercise 2.2

Let |ψ⟩ = 1√
2
(|0⟩+ |1⟩), which is a valid quantum state. Since MAD is obtained by

extending by linearity, Eq. (2.8) implies that

MAD |ψ⟩ = MAD

(
1√
2
|0⟩+ 1√

2
|1⟩
)

=
1√
2

MAD |0⟩+ 1√
2

MAD |1⟩

=
1√
2
|0⟩+ 1

2
(|0⟩+ |1⟩) =

(
1√
2
+

1
2

)
|0⟩+ 1

2
|1⟩ .

But (
1√
2
+

1
2

)2

+

(
1
2

)2

= 1 +
1√
2
̸= 1,

so MAD |ψ⟩ is not a valid qubit state.

Solution to Exercise 2.3

1. U(α) acts on an arbitrary state as follows:

U(α)

(
ψ0
ψ1

)
= U(α)

(
ψ0

(
1
0

)
+ ψ1

(
0
1

))
= ψ0

(
cos α
sin α

)
+ ψ1

(− sin α
cos α

)
=

(
ψ0 cos α− ψ1 sin α
ψ0 sin α + ψ1 cos α

)
.

2. Since |ψ(β)⟩ =
(

cos β
sin β

)
,

U(α) |ψ(β)⟩ = U(α)

(
cos β
sin β

)
=

(
cos β cos α− sin β sin α
cos β sin α + sin β cos α

)
=

(
cos(α + β)
sin(α + β)

)
= |ψ(α + β)⟩ .

37

Solution to Exercise 2.4
Take an arbitrary state ψ0 |0⟩+ ψ1 |1⟩, first use the linearity of M and then the linearity of
N:

NM(ψ0 |0⟩+ ψ1 |1⟩) = N
(

M(ψ0 |0⟩+ ψ1 |1⟩)
)

= N
(
ψ0M |0⟩+ ψ1M |1⟩

)
= ψ0NM |0⟩+ ψ1NM |1⟩ .

In the last step, we used Eq. (2.10).

Solution to Exercise 2.5

We have (NM)−1 = M−1N−1, since for any |ψ⟩ we have

M−1N−1NM |ψ⟩ = M−1(N−1N(M |ψ⟩)) = M−1(M |ψ⟩) = M−1M |ψ⟩ = |ψ⟩

and

NMM−1N−1 |ψ⟩ = N(MM−1(N−1 |ψ⟩)) = N(N−1 |ψ⟩) = NN−1 |ψ⟩ = |ψ⟩ .

Solution to Exercise 2.6
Apply U(−π/4) and measure. You can guess the state with certainty!

Solution to Exercise 2.7
We saw above that any combination M of rotations and reflections is linear. Thus if
M |ψ(θ)⟩ = |ψ(θ′)⟩ =

(
cos θ′
sin θ′

)
, then M

(
− |ψ(θ)⟩

)
= − |ψ(θ′)⟩ =

(− cos θ′
− sin θ′

)
. In view of

Eq. (2.6), the probabilities p0 and p1 of measurement outcomes are the same for both states.

Solution to Exercise 2.9
Tilting your head changes the angle between the polarizer in your sunglasses and the
direction in which the electromagnetic light waves emitted by your screen oscillate. Since
the amount of light that can pass through a polarizer depends on this angle, the screen will
appear either brighter or darker. Similarly, changing the angle θ will change the probability
that measuring the state |ψ(θ)⟩ will produce the outcome 0.

38

Solution to Exercise 2.8
Ideally, Bob would like to send 2 bits indicating which leg and which arm is broken.
However, Alice only cares about one of these bits since she has only one type of tools with
her.

1. Let us denote the two possible values of each bit by L (left) and R (right). One strategy
Bob can use is to send the “majority” of his two bits. Namely, he can use the following
encoding: LL 7→ L, RR 7→ R. The remaining two cases he can encode arbitrarily, say,
LR 7→ L, RL 7→ R. Alice’s strategy is simply to send the limb corresponding to Bob’s
message (the left limb if she received L and the right limb if she received R). This
works with probability

1
4

(
1 + 1 +

1
2
+

1
2

)
=

3
4
= 0.75, (2.24)

where the four terms inside the brackets are the probabilities that Alice makes the
right decision for each of the four Bob’s situations.

2. Bob can send the following qubit state, depending on what limbs are broken (i.e., LL
means left leg and left arm, LR means left leg and right arm, etc.)

|LL⟩ = cos(π/8) |0⟩ − sin(π/8) |1⟩
|LR⟩ = cos(π/8) |0⟩+ sin(π/8) |1⟩
|RR⟩ = cos(3π/8) |0⟩+ sin(3π/8) |1⟩
|RL⟩ = cos(3π/8) |0⟩ − sin(3π/8) |1⟩

To recover the leg bit, Alice just measures. To recover the arm bit, Alice applies
U(π/4) and then measures. (Note that she cannot recover both bits since the original
state is no longer around after the measurement.) They will succeed with probability
cos2(π/8) = 1

2 +
1

2
√

2
≈ 0.85. This is better than in the first scenario!

|0⟩

|1⟩

LL

LR

RL

RR

Extracting the leg bit

|0⟩

|1⟩

LL

LR

RL

RR

Extracting the arm bit

39

40

Quest 3: Wizard of entanglement

In the previous Quests, we discussed all about how a single probabilistic bit and a single
quantum bit behave. This week, you will learn what happens when you have two of them. We
first discuss two bits and learn in which states they can be and how they can be correlated. We
then move on to consider two quantum bits and what it means for them to be entangled.

3.1 Two probabilistic bits

When you have two coins placed on a table, they can be in one out of four configurations:

These correspond to the four possible bit strings11: 00, 01, 10, 11.
If you have a pair of probabilistic bits, their state is described by a probability distribution

over these four possible deterministic states. In other words, their state is specified by four
numbers p00, p01, p10, p11 ≥ 0 such that p00 + p01 + p10 + p11 = 1. Just like in the case of a single
bit, we could write this down as a vector 

p00
p01
p10
p11

 . (3.1)

While accurate, this representation is quite clumsy because keeping track of which probability
is assigned to which bit configuration can be hard (does p10 or p01 go first?!), and it will become
only harder once we have more than two bits. It is much more convenient to use a notation that
lets us directly keep track of the probabilities assigned to particular bit strings. We therefore
extend the notation we introduced in Eq. (1.3) for a single probabilistic bit and write the above
two-bit state as follows:

p00[00] + p01[01] + p10[10] + p11[11]. (3.2)

If you wish, you can always relate this notation back to the 4-vector notation in Eq. (3.1) using
the following dictionary that generalizes Eq. (1.2):

[00] =


1
0
0
0

 , [01] =


0
1
0
0

 , [10] =


0
0
1
0

 , [11] =


0
0
0
1

 . (3.3)

One advantage of this notation in the case of multiple bits is that we can simply omit entries
that are zero. For example, we can simply write

1
2
[00] +

1
2
[11]

instead of the more clumsy

1
2
[00] + 0 [01] + 0 [10] +

1
2
[11].

With this notation it is also much easier to describe measurements and operations on several
probabilistic bits. We can explore two probabilistic bits using QUIRKY, which has again gained
new powers since last week. To begin, go to:

11A ‘string’ means a sequence of symbols (in this case: a sequence of bit values). It will be our favourite notation
when we are dealing with multiple coins or bits.

41

https://www.quantum-quest.org/quirky

and click on “Quest 3” and select “Two Bits”. Your web browser will look similarly to Fig. 3.1.
Note that we now have two wires, corresponding to two bits, which are initialized in state [00].
Perhaps surprisingly, the first bit corresponds to the bottom wire and the second bit to the top
wire. In addition, there is one new box: • (but the mystery box is gone). We will discuss the
meaning of this box later in this chapter.

Figure 3.1: QUIRKY for Quest 3.

3.1.1 Measuring both bits

Measuring (or “looking at”) two probabilistic bits works the same way as Eq. (1.18) for a
single bit. You get one out of four possible outcomes (00, 01, 10, or 11) with the corresponding
probability:

p00[00] + p01[01] + p10[10] + p11[11]

[00] [01] [10] [11]

p00 p01 p10 p11 (3.4)

The state of both bits after the measurement is no longer a distribution over four possibilities
but rather just a single option that corresponds to the measurement outcome you observed. To
emphasize this difference, we use light blue for probabilistic bits and gray for deterministic
ones after the measurement. How can we measure both bits in QUIRKY? We simply use the
probability display, like so:

42

https://www.quantum-quest.org/quirky
https://www.quantum-quest.org/quirky/QuirkyQuest3P.html
https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B%22Chance2%22%5D%5D%7D

Note that, by default, the probability display is connected to both wires, so it shows the prob-
abilities for both bits. The order of probabilities is as in the 4-vector notation in Eq. (3.1). You
don’t have to remember the order, though. Simply hover the table with your mouse cursor to
remind yourself (thanks, Craig!).

For example, if the two probabilistic bits are in state

1
2
[00] +

1
2
[11], (3.5)

then we obtain as measurement outcomes either 00 or 11, each with 50% probability. Notice that
this state is special – if we see that the measurement outcome of the first bit is 0, we immediately
learn that the outcome from the second bit also has to be 0, and similarly for when either of the
two outcomes is 1. Since the measurement outcomes of both bits are always equal, we call two
bits in state (3.5) perfectly correlated. We will see below how such states can be created.

3.1.2 Local operations

When you have two or more probabilistic bits, you can act on them in many different ways. In
particular, you can act on all of them together with a global operation or only on one or a few at
a time with a local operation. Let us consider local operations first.

Recall the NOT operation from §1.2 that flips a bit. What happens if we have two bits and
apply NOT only on the first one? In that case the first bit should be flipped while the second
should remain the same. This means the local NOT operation on the first bit, which we will
denote by NOT1, acts as follows:

NOT1 [00] = [10], NOT1 [01] = [11], NOT1 [10] = [00], NOT1 [11] = [01]. (3.6)

Similarly, if we apply NOT only on the second bit, the resulting NOT2 operation acts as follows:

NOT2 [00] = [01], NOT2 [01] = [00], NOT2 [10] = [11], NOT2 [11] = [10]. (3.7)

What we just described are local NOT operations on deterministic bits. How should we
extend them to probabilistic bits? Recall from §1.2.1 that any operation that is fully specified on
deterministic bits can be extended by linearity to probabilistic bits. For example, NOT2 acts on
two probabilistic bits as follows:

NOT2
(

p00[00] + p01[01] + p10[10] + p11[11]
)

= p00[01] + p01[00] + p10[11] + p11[10]
= p01[00] + p00[01] + p11[10] + p10[11],

where in the first step we used Eq. (3.7) and in the second step we just reordered the terms to
sort the binary strings. You can also write this in the 4-vector notation, but it is somewhat less
intuitive:

NOT2


p00
p01
p10
p11

 =


p01
p00
p11
p10

 . (3.8)

Exercise 3.1: NOT1 in the 4-vector notation (optional)

Similar to Eq. (3.8), write the action of NOT1 on two probabilistic bits in the 4-vector
notation.

To apply a single-bit operation in QUIRKY, we drop the corresponding box onto eiter the
first or the second wire. For example, the following sequence prepares the [10] state and shows
the outcome probabilities when measuring both bits:

43

This makes sense since the bottom wire in QUIRKY corresponds to the first bit.
Similarly, if we first flip one bit and then the other, the result is the [11] state:

Clearly, the order in which we apply the two NOT operations does not matter. This means that
we can also apply them in parallel:

We can in the same way apply random operations to one of the bits. For example, suppose
we subject the first bit to the operation R(r) that resets a bit with probability r (Eq. (1.13)). Since
R(r)[0] = [0], we have that

R(r)1[00] = [00], R(r)1[01] = [01]. (3.9)

And since R(r)[1] = r[0] + (1− r)[1], we have that

R(r)1[10] = r[00] + (1− r)[10], R(r)1[11] = r[01] + (1− r)[11]. (3.10)

For example, if we prepare the state [11] and apply R(1/3) to the first bit, we obtain

R(1/3)1[11] =
1
3
[01] +

2
3
[11], (3.11)

as confirmed by QUIRKY:

Here is an even more interesting example, which you can tackle in the exercise below:

(3.12)

Homework 3.1: R(r) on the second bit

1. Write down formulas for R(r)2 analogously to Eqs. (3.9) and (3.10).

44

https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22NOT%22%5D%2C%5B%22Chance2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22NOT%22%5D%2C%5B%22NOT%22%5D%2C%5B%22Chance2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22NOT%22%5D%2C%5B%22Chance2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22NOT%22%5D%2C%5B1%2C%22~d1kc%22%5D%2C%5B%22Chance2%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~d1kc%22%2C%22name%22%3A%22R(1%2F3)%22%2C%22matrix%22%3A%22%7B%7B1%2C0.3333333%7D%2C%7B0%2C0.6666667%7D%7D%22%7D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22NOT%22%5D%2C%5B%22~d1kc%22%2C%22~d1kc%22%5D%2C%5B%22Chance2%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~d1kc%22%2C%22name%22%3A%22R(1%2F3)%22%2C%22matrix%22%3A%22%7B%7B1%2C0.3333333%7D%2C%7B0%2C0.6666667%7D%7D%22%7D%5D%7D

2. Explain why QUIRKY gives the correct answer in (3.12).

3.1.3 Measuring only one bit �
If you have two probabilistic bits and you measure only one of them, what are the probabilities
to get each of the two outcomes? Our notation is particularly convenient for figuring this out.
Consider again a general probabilistic two-bit state

p00[00] + p01[01] + p10[10] + p11[11].

To find the probability of outcome 0 when measuring some bit, you simply sum together the
probabilities of all terms where the bit you are measuring is in the desired state 0; similarly for
the outcome 1.

For example, the probability of observing outcome 1 when measuring the first bit is

p10 + p11, (3.13)

corresponding to the probabilities in Eq. (3.4) that lead to [10] and [11], which are the two bit
strings that start with 1. Similarly, the probability of observing outcome 0 when measuring
the second bit is

p00 + p10,

corresponding to the probabilities that lead to the two bit strings that end with zero, [00] and [10].
It is easy to compute this if you arrange the four probabilities in a 2× 2 square, as in Fig. 3.2.

p00 p01

p10 p11

[0]

[1]

[0] [1]

Measuring bit 1

Measuring
bit 2

p00 + p01

p10 + p11

p00 + p10 p01 + p11

Figure 3.2: Probabilities of measurement outcomes when measuring only one out of two
probabilistic bits.

We can also use QUIRKY to display the probabilities when measuring a single bit. Simply
resize the probability display so that it only covers a single wire, like so:

45

https://video.uva.nl/media/0_auj0sba6
https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22NOT%22%5D%2C%5B1%2C%22~d1kc%22%5D%2C%5B1%2C%22Chance1%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~d1kc%22%2C%22name%22%3A%22R(1%2F3)%22%2C%22matrix%22%3A%22%7B%7B1%2C0.3333333%7D%2C%7B0%2C0.6666667%7D%7D%22%7D%5D%7D

In fact, we can view both the probabilities of outcomes when measuring only the first bit and
the probabilities of outcomes when measuring only the second bit at the same time:

Note that the result is very intuitive. Since the two bits are never “correlated”, it is clear that the
first bit should be in state 1

3 [0] +
2
3 [1] and the second bit in state [1].

3.1.4 State of the other bit

After the measurement, the bit that was measured is in a deterministic state that corresponds
to the measurement outcome (just as when measuring a single bit – see Eq. (1.18)). But how
about the other bit that was not measured? Its state after the measurement in general will not
be deterministic. For example, if the initial state of the two probabilistic bits is

1
2
[10] +

1
2
[11] (3.14)

and the first bit is measured, the probability of observing 1 is 1/2 + 1/2 = 1. In other words,
the first bit in Eq. (3.14) is deterministic and the two probabilities actually describe only the
second bit. Hence, you can intuitively think of this state as the result of “combining” together
two separate probabilistic bits: [1] and 1

2 [0] +
1
2 [1] (we will talk more about how to combine two

probabilistic bits in §3.1.7). Therefore it makes sense that the state of the second bit after the
measurement should be uniformly random, namely

1
2
[0] +

1
2
[1].

More generally, suppose that we start with two probabilistic bits in an arbitrary state

p00[00] + p01[01] + p10[10] + p11[11] (3.15)

and measure the first bit. The state of the remaining bit will generally depend on the measure-
ment outcome. For example, if the outcome was 1, to find the state of the second bit we first
collect all terms in Eq. (3.15) where the first bit has value 1:

p10[10] + p11[11].

Then, we ignore the first bit since we already know that its value is 1:

p10[0] + p11[1].

Finally, since these two probabilities may not sum to one, we divide them by their sum p10 +
p11:

p10

p10 + p11
[0] +

p11

p10 + p11
[1]. (3.16)

This is the probability distribution on the second bit when the first bit is measured and yields
outcome 1 (see the right side of Fig. 3.3). The remaining cases are also summarized in Fig. 3.3.

To see that these rules make sense, let us verify that measuring the first bit and then the
second bit gives the same probabilities as directly measuring both bits. For example, the
probability of obtaining 1 from the first bit and 0 from the second bit should simply be p10.
Indeed, according to Eq. (3.13), we obtain the outcome 1 from the first bit with probability

46

https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22NOT%22%5D%2C%5B1%2C%22~d1kc%22%5D%2C%5B%22Chance1%22%2C%22Chance1%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~d1kc%22%2C%22name%22%3A%22R(1%2F3)%22%2C%22matrix%22%3A%22%7B%7B1%2C0.3333333%7D%2C%7B0%2C0.6666667%7D%7D%22%7D%5D%7D

0

Bit 2

1

0

Bit 1

1

p00 p01

p10 p11

[0]
p00[0] + p01[1]

p00 + p01

[1]
p10[0] + p11[1]

p10 + p11

p00[0] + p10[1]

p00 + p10
[0]

p01[0] + p11[1]

p01 + p11
[1]

Measuring bit 1

Measuring
bit 2

p00 + p01

p10 + p11

p00 + p10 p01 + p11

Figure 3.3: Outcome probabilities and the state of the remaining bit when measuring one out of
two probabilistic bits. After the measurement, the bit that was measured becomes deterministic
(gray) while the other bit stays probabilistic (light blue).

p10 + p11 and, given this outcome, Eq. (3.16) asserts that we obtain the outcome 0 from the
second bit with probability p10/(p10 + p11). Thus the total probability of first obtaining 1 from
the first bit and then 0 from the second bit is

(p10 + p11)×
p10

p10 + p11
= p10,

which is exactly what we want according to Eq. (3.4). The other cases can be verified similarly.

Exercise 3.2: Guessing Alice’s coin

Problem: Alice has three coins called u, q, r with the following probability distributions:

u =

(
1/2
1/2

)
, q =

(
3/4
1/4

)
, r =

(
1/3
2/3

)
.

Alice performs the following sequence of coin tosses:

1. She tosses the coin u.

2. Depending on the outcome, she tosses one of the other two coins:

(0) if u produced 0, she tosses q;
(1) if u produced 1, she tosses r.

3. Alice tells her friend Bob the outcome (0 or 1) of the coin she tossed in step 2 (but she
does not tell whether it was produced by tossing the coin q or r).

In this situation there are two probabilistic bits: Alice’ first coin toss and Alice’ second coin
toss (which is exactly the same as Bob’s probabilistic bit).

47

Questions:

1. What is the probability distribution of Alice’ two coin tosses?

2. What is the probability distribution when Bob measures his probabilistic bit?

3. Given that Bob measures his bit and obtains outcome 0, is it more likely that Alice’
first coin shows 0 or 1? How about if his outcome is 1?

3.1.5 SWAP operation

Now that we know how to manipulate individual probabilistic bits, we would also like to apply
operations on several bits at a time. One of the simplest such operations is the SWAP operation
that interchanges two bits:

SWAP [00] = [00],
SWAP [01] = [10],
SWAP [10] = [01],
SWAP [11] = [11].

SWAP effectively amounts to exchanging the strings [01] and [10] while leaving the other two
strings alone. The above equations can be written more concisely as follows:

SWAP [a, b] = [b, a], (3.17)

for all a, b ∈ {0, 1}, where we use a comma to separate the two bits. As usual, we can extend
SWAP from deterministic to probabilistic bits by linearity:

SWAP
(

p00[00] + p01[01] + p10[10] + p11[11]
)

= p00[00] + p01[10] + p10[01] + p11[11]
= p00[00] + p10[01] + p01[10] + p11[11].

Exercise 3.3: SWAP in the 4-vector notation (optional)

Write down the action of SWAP on two probabilistic bits in the 4-vector notation.

3.1.6 Controlled-NOT operation

NOT and SWAP operations together can be used to change individual bits and to reorder them
in a different order. However, they don’t cause the bits to interact with one another. What
we would like is another more sophisticated operation that can change the value of one bit
depending on the value of another. The simplest and most important such operation is CNOT
or the controlled-NOT operation. It flips the target bit if the control bit is set to 1.

When the first bit is the control and the second bit is the target, we will write this operation
as CNOT1→2. In this case:

CNOT1→2 [00] = [00],
CNOT1→2 [01] = [01],
CNOT1→2 [10] = [11],
CNOT1→2 [11] = [10].

(3.18)

This amounts to exchanging the strings [10] and [11] while leaving the other two strings alone.

48

Another way of thinking about CNOT1→2 is as an addition: it adds the two bits (modulo 2)
and stores the result in the second bit. This can be summarized very concisely as follows:

CNOT1→2 [a, b] = [a, a⊕ b], (3.19)

for any a, b ∈ {0, 1}, where “⊕” denotes addition modulo 2 and we use a comma to separate the
values of the two bits. The laws for addition modulo 2 are as follows:

0⊕ 0 = 1⊕ 1 = 0, 0⊕ 1 = 1⊕ 0 = 1. (3.20)

Sometimes “⊕” is also called XOR or the exclusive OR operation, since the result is 1 when
exactly one out of the two bits are 1. As usual, we can extend CNOT1→2 from deterministic to
probabilistic bits by linearity.

We will also be interested in controlled-NOT operations where the second bit is the control
and the first is the target. In analogy, we will denote this operation by CNOT2→1.

Exercise 3.4: Swapping control and target

1. Write down a formula similar to Eq. (3.19) for CNOT2→1.

2. How can CNOT2→1 be implemented using SWAP and CNOT1→2?

In QUIRKY, you can build a controlled-NOT operation by the following two-step process.
First, drag the • box onto one of the wires – this marks the wire as the control bit. Next,
drag the ⊕ box onto the corresponding location on the other wire, marking it as the target
bit. A connection will emerge to indicate that you have successfully created a controlled-NOT
operation. For example, if we choose the bottom bit as the control and the top bit as the target,
we obtain the following result:

Remembering that the bottom (!) bit is the first bit and the top bit is the second bit, we see that
this corresponds to the CNOT1→2 operation. Here is a more complicated example, where we
first apply CNOT1→2 and then CNOT2→1:

Homework 3.2: SWAP from CNOTs
Problem: It is almost midnight but Bob is still tinker-
ing with his prototype probabilistic bit computer that he
wants to present at school the next day. He is so preoccu-
pied with calibrating the randomness generator that he
forgot to feed his parrot Ziggy. To attract Bob’s attention,
Ziggy knocks off Bob’s coffee cup and spills the coffee all
over his custom-made keyboard for activating different
operations. Bob is horrified since the SWAP key is no
longer working! Luckily, the CNOT key still works.

49

https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22%E2%80%A2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C%22NOT%22%5D%5D%7D

Question: How can Bob implement the SWAP operation using only controlled-NOT opera-
tions? (If you want to prove that two operations are the same, you only have to show this
for the basis states because of extension by linearity.)

Hint: You should use three CNOT operations.

3.1.7 Product distributions�
Let us now talk in more detail about the states of a two-bit system. Suppose, for example, that
we have two probabilistic bits, q = q0[0] + q1[1] and r = r0[0] + r1[1]. How can we build a state
of a two-bit system from this? While we did not explicitly put it this way, we already discussed
this question in §1.1.1, where we defined the probability of two events to occur simultaneously
by the product of the probabilities of the two individual events. For example, the probability
that the bits q and r are in state [00] is q0r0. Similarly, the probability of them being in the state
[01] is q0r1. If we account for all four possibilities, we get

q0r0[00] + q0r1[01] + q1r0[10] + q1r1[11]. (3.21)

In other words, the four probabilities pab of the combined state

p00[00] + p01[01] + p10[10] + p11[11]

are given by the formula

pab = qarb. (3.22)

You can verify that the outcome probabilities when measuring the first bit are given by q,
while the outcome probabilities when measuring the second bit are given by r (you can do this
using the rule from Fig. 3.2 and the fact that r0 + r1 = 1 and q0 + q1 = 1). However, our two-bit
state has an additional special property: the values of the two bits are independent from each
other. This means that when we observe either of the two bits we do not learn any information
about the other bit. You can verify this in the next exercise:

Exercise 3.5: Independent bits (optional)

Suppose that we measure the first of the two bits in the state (3.21) and denote the obtained
outcome by a ∈ {0, 1}. Show that the state on the second bit is r, independently of the
measurement outcome a on the first bit. In other words, putting the two bits together and
then measuring the first bit did not affect the state of the second bit at all (as it should be)!

Let us introduce some notation that makes the special structure of the state more clear.
Namely, let us use “⊗” to denote the operation of putting two probabilistic bits together and
considering them as a single system consisting of two bits:

q⊗ r =
(
q0[0] + q1[1]

)
⊗
(
r0[0] + r1[1]

)
(3.23)

The symbol “⊗” is called the tensor product or Kronecker product. How can we convert this
strange expression to an actual distribution on two bits, like in Eq. (3.21)? First, note that for
deterministic bits the operation “⊗” reduces to simply concatenating strings. For example,

[0]⊗ [1] = [01]. (3.24)

This makes sense since having a bit in state [0] and another one in state [1] is the same as having
two bits in the state [01]. As always, to extend this rule to probabilistic bits, we ask our good

50

https://video.uva.nl/media/0_olyxi65d

friend linearity for help! By linearity, we can expand both terms in Eq. (3.23) and then apply the
concatenation rule:(

q0[0] + q1[1]
)
⊗
(
r0[0] + r1[1]

)
= q0r0

(
[0]⊗ [0]

)
+ q0r1

(
[0]⊗ [1]

)
+ q1r0

(
[1]⊗ [0]

)
+ q1r1

(
[1]⊗ [1]

)
= q0r0[00] + q0r1[01] + q1r0[10] + q1r1[11].

Note that we have recovered the distribution in Eq. (3.21). In other words, we have the following
identity between (3.23) and (3.21):(

q0[0] + q1[1]
)
⊗
(
r0[0] + r1[1]

)
= q0r0[00] + q0r1[01] + q1r0[10] + q1r1[11]. (3.25)

This means that the way we defined the tensor product operation “⊗” is indeed consistent
with our earlier argument that the probability distribution of a two-bit system is obtained by
multiplying the probabilities of individual bits, see Eq. (3.22).

Note that Eq. (3.25) is very similar to the distributive law for addition and multiplication:

(a + b)(c + d) = ac + ad + bc + bd.

The only difference is that instead of numbers we have vectors and instead of multiplication
we have the concatenation rule [a]⊗ [b] = [a, b]. A major difference between concatenation
and multiplication is that the order of elements is important in concatenation. Generally,
[a, b] ̸= [b, a] since concatenating [a] and [b] is not the same as concatenating [b] and [a]. By the
way, you can check that using the vector notation, you can write the tensor product as follows:

(
q0
q1

)
⊗
(

r0
r1

)
=

q0

(
r0
r1

)
q1

(
r0
r1

)
 =


q0r0
q0r1
q1r0
q1r1

 ,

where the second expression is a block vector whose both entries are vectors.
The tensor product gives a quick way of understanding what is going on in (3.12), which

we repeat here for convenience:

Note that we prepare each bit independently in the state 1
3 [0] +

2
3 [1]. Therefore, the joint state of

both bits is

(
1
3
[0] +

2
3
[1]
)
⊗
(

1
3
[0] +

2
3
[1]
)
=

1
9
[00] +

2
9
[01] +

2
9
[10] +

4
9
[11] =


1/9
2/9
2/9
4/9

 ≈


11.1%
22.2%
22.2%
44.4%

 ,

in agreement with QUIRKY.

Homework 3.3: Tensor product

Find two probabilistic bits q and r such that

q⊗ r = 0.48[00] + 0.32[01] + 0.12[10] + 0.08[11].

51

https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22NOT%22%5D%2C%5B%22~d1kc%22%2C%22~d1kc%22%5D%2C%5B%22Chance2%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~d1kc%22%2C%22name%22%3A%22R(1%2F3)%22%2C%22matrix%22%3A%22%7B%7B1%2C0.3333333%7D%2C%7B0%2C0.6666667%7D%7D%22%7D%5D%7D

The tensor product also allows us to write more compact formulas for local operations.
Namely, if M is an operation on one bit then

M1([a]⊗ [b]) = M[a]⊗ [b], M2([a]⊗ [b]) = [a]⊗M[b]. (3.26)

This agrees with the formulas discussed in §3.1.2.

Since the two-bit distributions described above are obtained by taking a product of two
one-bit distributions, p = q⊗ r, they are called product states or product distributions. As
you saw in Exercise 3.5, product distributions naturally model a situation when two bits arise
independently, such as when tossing two coins. But is every two-bit distribution a product
distribution? Interestingly, this is not the case, as we will see in the following section.

3.1.8 Correlated distributions
�

Some two-bit distributions are not product distributions – they cannot be written as in Eq. (3.21)
or Eq. (3.23), no matter what values of qa and rb you choose. We will say that a distribution is
correlated if it is not a product distribution. One example of a correlated distribution is

1
2
[00] +

1
2
[11]. (3.27)

To see that this is not a product distribution, suppose we measure one of the bits. The outcome a
will be completely random, i.e., either 0 or 1 with probability 50% each. However, once we
know the outcome a, the state of the remaining bit is completely determined – measuring it
would yield the same outcome with probability 100%. Hence the state of the remaining bit is
b = a, which depends on the outcome a of the measurement performed on the other bit. We
saw in Exercise 3.5 that this cannot be the case for a product distribution. Thus, we have proved
that Eq. (3.27) describes a correlated state. In fact, the two bits are perfectly correlated since both
measurement outcomes are completely random but always identical (a = b). Because of this
property we say that Eq. (3.27) describes a pair of perfectly correlated random bits.

Correlated distributions arise naturally through some kind of interaction. For example,
suppose you toss a fair coin, write the outcome on a piece of paper, hide the paper in an
envelope, and pass the envelope to a friend. From the perspective of your friend (who knows
the preparation procedure but not what is written on the paper inside the envelope), the state
of your coin (bit 1) and of the piece of paper inside their envelope (bit 2) is described by

1
2

⊗ heads +
1
2

⊗ tai ls

which is nothing but an amusing way of writing the two-bit state in Eq. (3.27).
How can we create correlated states in QUIRKY? Local operations alone are not enough

since those can only create product states. However, we can use the controlled-NOT operation
to make the two bits interact, as in the following QUIRKY computation:

Why does this work? You can figure this out in the following exercise:

52

https://video.uva.nl/media/0_th6ekpkq
https://www.quantum-quest.org/quirky/QuirkyQuest3P.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22NOT%22%5D%2C%5B1%2C%22~jueh%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22Chance2%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~jueh%22%2C%22name%22%3A%22R(1%2F2)%22%2C%22matrix%22%3A%22%7B%7B1%2C0.5%7D%2C%7B0%2C0.5%7D%7D%22%7D%5D%7D

Exercise 3.6: Creating perfectly correlated random bits

Explain why the above QUIRKY computation prepares the state 1
2 [00] + 1

2 [11].

To check whether an arbitrary two-bit distribution

p = p00[00] + p01[01] + p10[10] + p11[11]

corresponds to a product or a correlated state, you can simply compute the following quantity:

∆(p) = p00 p11 − p01 p10. (3.28)

If ∆(p) = 0 then p is a product distribution; otherwise it is correlated. For example, for the state
in Eq. (3.27) we find that

∆
(

1
2
[00] +

1
2
[11]

)
=

1
2
· 1

2
− 0 · 0 =

1
4
̸= 0,

which confirms that it is indeed correlated and not a product state. If you are curious why this
simple condition works, you can read the explanation below. But since it is not essential for
understanding the rest, you can also feel free to skip it.

To prove that ∆(p) = 0 is equivalent to p being a product state, we need to show two things.
First, let us show that if p is a product state then ∆(p) = 0. Indeed, if p = q⊗ r then

∆(p) = q0r0q1r1 − q0r1q1r0 = 0.

How about the converse claim – could we have ∆(p) = 0 even when p is not a product state?
It turns out that this is not possible! To prove this, let us assume that ∆(p) = 0 and show that
p = q⊗ r, for some probabilistic bits q and r. Let us choose these two bits as follows:

q = q0[0] + q1[1] = (p00 + p01)[0] + (p10 + p11)[1], (3.29)
r = r0[0] + r1[1] = (p00 + p10)[0] + (p01 + p11)[1].

Note from Fig. 3.3 that q and r are simply the distributions of outcomes that we would obtain if
we measured the first or the second bit, respectively. Let us now verify that this choice of q
and r indeed produces the state p:

q⊗ r =
(
(p00 + p01)[0] + (p10 + p11)[1]

)
⊗
(
(p00 + p10)[0] + (p01 + p11)[1]

)
= (p00 + p01)(p00 + p10)[00] + · · ·
= (p00 p00 + p00 p10 + p01 p00 + p01 p10)[00] + · · ·
= (p00 p00 + p00 p10 + p01 p00 + p00 p11)[00] + · · ·
= p00(p00 + p10 + p01 + p11)[00] + · · ·
= p00[00] + · · ·
= p.

Here we first used Eq. (3.25), then we multiplied out the product, next we used ∆(p) = 0 to
replace p01 p10 by p00 p11 (see Eq. (3.28)) , and finally we simplified p00 + p01 + p10 + p11 = 1,
since p is a probability distribution. The three terms that we abbreviated by “. . . ” can be treated
similarly. Can you fill in the details and verify one of them yourself?

We saw before in Exercise 3.5 that p cannot be a product state if measuring the first bit
“disturbs” the state of the second bit. In fact, the converse is also true, as you can show in the
following homework.

53

Homework 3.4: Independence implies product (optional)

Assume that p is an arbitrary two-bit probability distribution such that the state of the
second bit does not depend on the outcome of measuring the first bit. Show that such p is a
product distribution. You can do this in two steps:

1. The measurement on the first bit can either produce outcome 0 or 1. Use Fig. 3.3
to compare the remaining state on the second bit in these two cases and show the
following identities:

p00

p00 + p01
=

p10

p10 + p11
,

p01

p00 + p01
=

p11

p10 + p11
.

2. Use these equations to show that ∆(p) = 0 from Eq. (3.28).

3.2 Two quantum bits

The way we can describe two quantum bits is very similar to how we described two probabilistic
bits. The main difference is that we have amplitudes instead of probabilities, meaning that
they can be negative and are normalized in a different way (see §2.1.1). A general two-qubit
quantum state looks as follows:

|ψ⟩ = ψ00 |00⟩+ ψ01 |01⟩+ ψ10 |10⟩+ ψ11 |11⟩ (3.30)

where ψij ∈ [−1, 1] and
ψ2

00 + ψ2
01 + ψ2

10 + ψ2
11 = 1.

We write |a, b⟩ instead of [a, b] to make it clear that we are now dealing with quantum bits and
not probabilistic bits. Just like we did in Eq. (3.3) for probabilistic bits, we can identify the four
basis states |a, b⟩ with the four basis vectors

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 . (3.31)

Similarly to Eq. (3.1), the general two-qubit state in Eq. (3.30) can be represented by a 4-vector
ψ00
ψ01
ψ10
ψ11

 .

However, it quickly becomes cumbersome to manipulate such vectors. They are also not so
easy to visualize anymore, so we will mostly work with the |a, b⟩ notation in Eq. (3.30).

Another advantage of this notation is that it is much easier to combine quantum systems.
Recall from §3.1.7 that we used the tensor product operation “⊗” to combine two independent
probabilistic bits into a joint two-bit system. The same operation (except with [a] replaced by
|a⟩) works also for qubits. In particular, just like we combined the basis vectors of probabilistic
bits in Eq. (3.24), we can also do this for qubits:

|0⟩ ⊗ |0⟩ = |00⟩ , |0⟩ ⊗ |1⟩ = |01⟩ , |1⟩ ⊗ |0⟩ = |10⟩ , |1⟩ ⊗ |1⟩ = |11⟩ . (3.32)

Notice that this corresponds to simply concatenating the bit strings. This gives you an alternative
way to view the four two-qubit basis vectors in Eq. (3.31).

54

We can extend the tensor product operation to combine two arbitrary one-qubit states
|α⟩ = α0 |0⟩+ α1 |1⟩ and |β⟩ = β0 |0⟩+ β1 |1⟩ in the following way:

|α⟩ ⊗ |β⟩ = (α0 |0⟩+ α1 |1⟩)⊗ (β0 |0⟩+ β1 |1⟩)
= α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩ .

(3.33)

Two-qubit states of this form are called product states. In §3.2.3, we will discuss how to construct
these states using quantum operations. Importantly, just like for two probabilistic bits, not all
two-qubit states are product states.

Exercise 3.7: Tensor product and product states

Recall the states |+⟩ and |−⟩ from Exercise 2.1.

1. Write |+⟩ ⊗ |−⟩ in the same form as Eq. (3.30).

2. Is the state 1
2 (|00⟩+ |01⟩+ |10⟩+ |11⟩) a product state?

In the following, we will discuss the rules for measuring and manipulating two quantum
bits. While these rules will follow in complete analogy to the case of two probabilistic bits, we
will find some new and surprising phenomena along the way. Happily, this week QUIRKY is
also able to help us explore the world of two quantum bits! To begin, go to:

https://www.quantum-quest.org/quirky

and click on “Quest 3” and then on “Two Qubits”. Your web browser will look similarly
to Fig. 3.4. As compared to last week’s QUIRKY, we now have two quantum bits, which are
initialized in state |00⟩. In addition, there are three new boxes: Z , H , and • (and again the
mystery box is gone). We will discuss those in the remainder of this chapter.

Figure 3.4: QUIRKY for Quest 3.

55

https://www.quantum-quest.org/quirky
https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html

3.2.1 Measuring two qubits

Measurement for two-qubit states is defined in a very similar way to Eq. (2.7) for one-qubit
states, except as an outcome you get two bits with the following probabilities:

ψ00 |00⟩+ ψ01 |01⟩+ ψ10 |10⟩+ ψ11 |11⟩

[00] [01] [10] [11]

ψ2
00

ψ2
01 ψ2

10 ψ2
11 (3.34)

Here we use light green for quantum bits and gray for the resulting two deterministic bits
after the measurement. How can we measure both qubits in QUIRKY? We simply add two
measurements, one for each qubit, and use the probability display just like before:

3.2.2 Local operations

If you have two qubits, a local operation acts only on one of them. Any single-qubit operation can
be used as a local operation that acts on one out of two qubits, just like we did for probabilistic
bits in §3.1.2. For example, if you recall the single-bit NOT operation in Eq. (1.9) and how we
turned it into local NOT operations in Eqs. (3.6) and (3.7), we can do the exact same thing for
the single-qubit NOT. The resulting local quantum NOT operations are very similar:

NOT1 |00⟩ = |10⟩ , NOT1 |01⟩ = |11⟩ , NOT1 |10⟩ = |00⟩ , NOT1 |11⟩ = |01⟩ ,
NOT2 |00⟩ = |01⟩ , NOT2 |01⟩ = |00⟩ , NOT2 |10⟩ = |11⟩ , NOT2 |11⟩ = |10⟩ .

The only difference is that we have replaced the bit notation [ab] with the qubit notation |ab⟩.
As an application of this, let’s say we want to build all four possible two-qubit basis states

out of |00⟩. This can always be done by some sequence of NOT operations:

|00⟩ = |00⟩ , |01⟩ = NOT2 |00⟩ , |10⟩ = NOT1 |00⟩ , |11⟩ = NOT2 NOT1 |00⟩ .

Note that in the last case we could have done the two NOT operations in the opposite or-
der since either sequence corresponds to negating both bits. In other words, NOT2 NOT1 =
NOT1 NOT2.

To apply a local operation in QUIRKY, we drop the corresponding box onto eiter the first or
the second wire. For example, the following sequence prepares the |10⟩ state and shows the
outcome probabilities when measuring both qubits:

This makes sense since the bottom wire in QUIRKY corresponds to the first qubit.
This is most simple to state using the tensor product notation from Eq. (3.33) and linearity.

If U is an arbitrary single-qubit operation then we define U1 as the two-qubit operation that
acts on any basis vector |a, b⟩ = |a⟩ ⊗ |b⟩, where a, b ∈ {0, 1}, as follows:

U1 |a, b⟩ = U|a⟩ ⊗ |b⟩ . (3.35)

56

https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B%22Measure%22%2C%22Measure%22%5D%2C%5B%22Chance2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22NOT%22%5D%2C%5B%22Measure%22%2C%22Measure%22%5D%2C%5B%22Chance2%22%5D%5D%7D

Just to be clear, the right-hand side means (U|a⟩)⊗ |b⟩, i.e., the tensor product of the state U |a⟩
and the state |b⟩. This is intuitive, as it simply means that we apply U to the first quantum bit
and leave the second quantum bit alone.

To apply U1 to an arbitrary two-qubit state, we extend this prescription by linearity. As in
the first week, this means that we first expand |ψ⟩ in the form of Eq. (3.30) and then apply the
operation to each basis vector. That is,

U1 |ψ⟩ = ψ00 U1 |00⟩+ ψ01 U1 |01⟩+ ψ10 U1 |10⟩+ ψ11 U1 |11⟩

and now we can use Eq. (3.35) for each of the four terms. We similarly define U2 by

U2 |a, b⟩ = |a⟩ ⊗U |b⟩ (3.36)

and extend it by linearity. This is analogous to the formulas in Eq. (3.26) for ordinary bits.
In addition to the NOT operation, two important quantum operations that we will use all

the time are the Z operation from Eq. (2.12) and the Hadamard operation from Eq. (2.20). Since
they are so important, we gave them their own boxes in QUIRKY, namely Z and H . For
example, the following sequence of operations applies a NOT on the second (!) qubit, then a
Hadamard on the first qubit, and finally a Z, again on the first qubit:

(3.37)

What is the state that we get in this way? The mathematical expression for this state is

Z1H1NOT2 |00⟩ . (3.38)

Note that, in contrast to the graphical depiction (3.37), the input state |00⟩ in this expression
is on the right-hand side. This causes the order of operations to appear reversed. However,
both (3.37) and Eq. (3.38) describe the same process – the first operation applied to |00⟩ is NOT2,
then H1, and finally Z1. The only difference between (3.37) and Eq. (3.38) is the convention for
depicting the direction of time: it goes from left to right in (3.37) and from right to left in Eq. (3.38).
Unfortunately these two mismatching conventions are standard in quantum computing so there
is nothing we can do about it. You simply have to be careful when translating QUIRKY pictures
to equations and vice versa!

Exercise 3.8: Is QUIRKY right?

Compute the two-qubit state in Eq. (3.38) (that is, right before the measurement in (3.37)).
Compute the probability of measurement outcomes and compare your result with QUIRKY.

Last week, in §2.4.3, we dicussed that any operation on a single qubit is either a rotation
U(θ) or a reflection V(θ) = NOT U(θ). Since we can construct arbitrary rotations in QUIRKY

(see §2.4.1 of last week’s lecture notes), we can therefore apply arbitrary local operations on
either of the qubits using QUIRKY.

In fact, the rules of Eqs. (3.35) and (3.36) do not only work for basis vectors, but in fact for
arbitrary product states. That is, if |α⟩ and |β⟩ are arbitrary single-qubit states then

U1 (|α⟩ ⊗ |β⟩) = U |α⟩ ⊗ |β⟩ , (3.39)
U2 (|α⟩ ⊗ |β⟩) = |α⟩ ⊗U |β⟩ . (3.40)

57

https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%5D%2C%5B1%2C%22H%22%5D%2C%5B1%2C%22Z%22%5D%2C%5B%22Measure%22%2C%22Measure%22%5D%2C%5B%22Chance2%22%5D%5D%7D

Exercise 3.9: Local operations on product states (optional)

Can you verify Eq. (3.39) or (3.40)?

3.2.3 Parallel operations

If we apply one operation on the first qubit and another on the second qubit then the order of
these two operations does not matter. That is, if U and V are arbitrary single-qubit operations
then

U1V2 = V2U1. (3.41)

We can verify this intuitive fact by using Eqs. (3.39) and (3.40). For every basis state |a, b⟩ where
a, b ∈ {0, 1},

U1V2 |a, b⟩ = U1 (|a⟩ ⊗V |b⟩) = U |a⟩ ⊗V |b⟩ = V2 (U |a⟩ ⊗ |b⟩) = V2U1 |a, b⟩ ,

so Eq. (3.41) follows by linearity.
In fact, since the two operations act on different qubits, we could even do them in parallel!

This suggests introducing a new notation for the operation in Eq. (3.41):

U ⊗V.

We are re-using the tensor product symbol that we originally introduced for combining two
independent single-qubit states into a two-qubit state. The same meaning extends also to
quantum operations: U ⊗V denotes the combined operation that consists of applying U and V
to two different subsystems of a larger system. This notation is particularly convenient since it
interplays nicely with the original tensor product for states:

(U ⊗V)(|α⟩ ⊗ |β⟩) = U |α⟩ ⊗V |β⟩ . (3.42)

This equation simply says that if you have two independent states and you apply an operation
that acts independently on each of the two states, then you just end up applying each of the two
operations on the corresponding state. We will call U ⊗V a tensor product of two quantum
operations or a parallel operation.

QUIRKY allows us to apply local quantum operations in parallel. For example, we could
have written the sequence of operations in Eq. (3.37) as

where the NOT operation and the Hadamard operation are now applied in parallel.
Let us discuss another example. What happens if we apply H to both qubits? This operation

is denoted by H ⊗ H and according to Eqs. (2.20) and (3.42) acts as follows:

(H ⊗ H) |00⟩ = (H |0⟩)⊗ (H |0⟩)

=

(
1√
2
|0⟩+ 1√

2
|1⟩)

)
⊗
(

1√
2
|0⟩+ 1√

2
|1⟩)

)
=

1
2
|0⟩ ⊗ |0⟩+ 1

2
|0⟩ ⊗ |1⟩+ 1

2
|1⟩ ⊗ |0⟩+ 1

2
|1⟩ ⊗ |1⟩

=
1
2
(|00⟩+ |01⟩+ |10⟩+ |11⟩).

The resulting state is called the uniform superposition on two qubits since it contains each of
the two-qubit basis vectors with an equal amplitude. If we perform a measurement on this state
we obtain all four outcomes with equal probability. We can readily verify this using QUIRKY:

58

https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22H%22%5D%2C%5B1%2C%22Z%22%5D%2C%5B%22Measure%22%2C%22Measure%22%5D%2C%5B%22Chance2%22%5D%5D%7D

Exercise 3.10: Constructing a product state

1. Write 1
2 (|00⟩+ |01⟩ − |10⟩ − |11⟩) as a tensor product of two single-qubit states.

2. How can you construct this state by applying a sequence of local operations to |00⟩?

3. Implement the sequence of operations from step 2 in QUIRKY.

Eq. (3.42) shows that if we apply a parallel operation to a product state then we get another
product state. In fact, starting from |00⟩ we can get any product state in this way. This gives an
intuitive interpretation to the product states: they are exactly those states that we can get by
applying an arbitrary parallel operation to two qubits initialized in state |00⟩.

Homework 3.5: Product states from parallel operations

Show that every product state can be constructed by applying some parallel quantum
rotations (i.e., an operation of the form U(θ)⊗U(ϕ)) to |00⟩. Recall from Eq. (2.13) that
U(θ) denotes a rotation by angle θ.

Hint: Recall from Eq. (2.5) that the most general one-qubit state is of the from |ψ(θ)⟩.

We close our discussion of local operations with some general remarks. First, it is not hard
to check that

(U ⊗V)(U′ ⊗V ′) = UU′ ⊗VV ′, (3.43)

for any four single-qubit operations U, U′, V, V ′. Can you draw a picture to visualize what is
going on here?

We can now make use of the identity operation I from Eq. (2.18) which acts as I |ψ⟩ = |ψ⟩
(this trivially extends to I1 and I2 on two qubits). It is rather useless on its own, but can be
conveniently used in tensor product notation. For example, it allows us to write

U1 = U ⊗ I and V2 = I ⊗V,

which makes it very clear that, e.g., U1 applies the U-operation on the first qubit and nothing
on the second qubit. For example, the identity U1V2 = V2U1 from Eq. (3.41) now becomes

(U ⊗ I)(I ⊗V) = U ⊗V = (I ⊗V)(U ⊗ I) (3.44)

which is rather intuitive.
You might wonder if the order of operations actually matters if we apply them to the

same qubit? If we consider two rotations then it follows from Eq. (2.15) that their order is not
important since

U(θ)U(θ′) = U(θ + θ′) = U(θ′ + θ) = U(θ′)U(θ).

However, if U and V are two arbitrary single-qubit operations (in particular, one of them is
a reflection) then their composition generally depends on the order (see Exercise 3.11 below).
That is,

UV ̸= VU.

59

https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B%22H%22%2C%22H%22%5D%2C%5B%22Measure%22%2C%22Measure%22%5D%2C%5B%22Chance2%22%5D%5D%7D

This issue of course persists also when you have another qubit around, but are still acting with
both operations on the same qubit. For example,

(U ⊗ I)(V ⊗ I) = UV ⊗ I ̸= VU ⊗ I = (V ⊗ I)(U ⊗ I). (3.45)

We can also write this as U1V1 ̸= V1U1 (and similarly when we apply both operations to the
second qubit).

To understand intuitively the difference between Eqs. (3.44) and (3.45), imagine that U
means “putting on a sock” and V means “putting on a shoe”. Clearly, when U and V are
applied to the same foot, you will get different results depending on the order! However, if you
apply U and V to different feet (e.g., you use U ⊗ I and I ⊗V) then you will get the same result
irrespectively of the order of the two operations. Either way, if you want to be properly dressed,
you should apply (U ⊗U) and then (V ⊗V).

Exercise 3.11: The order is important

Show that HZ ̸= ZH.

3.2.4 Controlled operations

To go beyond product states, we need an operation that allows the two quantum bits to interact.
As before (see Eq. (2.18) for probabilistic bits), we will use a controlled-NOT operation for this,
which we define in complete analogy to Eqs. (3.18) and (3.19):

CNOT1→2 |00⟩ = |00⟩ ,
CNOT1→2 |01⟩ = |01⟩ ,
CNOT1→2 |10⟩ = |11⟩ ,
CNOT1→2 |11⟩ = |10⟩ ,

(3.46)

or, more concisely,

CNOT1→2 |a, b⟩ = |a, a⊕ b⟩ . (3.47)

Thus, on basis states, the operation CNOT1→2 toggles the second qubit controlled on the value
of the first qubit. We can also define an operation CNOT2→1 which uses the second qubit as the
control and the first as the target, i.e.,

CNOT2→1 |a, b⟩ = |a⊕ b, b⟩ . (3.48)

As usual, we extend these formulas by linearity to arbitrary two-qubit states.
In QUIRKY, you can build a controlled-NOT operation for quantum bits in the same way

as you learned for ordinary bits – see §3.1.6 in case you don’t remember. For example, the
CNOT1→2 operation for quantum bits looks just like before:

Many of the things that we proved for probabilistic bits are still true for quantum bits. E.g.,
your solution to Homework 3.2 will just as well allow you to swap two quantum bits! Another
example of this is the fact that doing the same controlled-NOT operation twice amounts to
doing nothing. For example, for CNOT1→2 this is the case because

CNOT1→2 CNOT1→2 |a, b⟩ = CNOT1→2 |a, a⊕ b⟩ = |a, a⊕ a⊕ b⟩ = |a, b⟩

60

https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22%E2%80%A2%22%5D%5D%7D

since a ⊕ a = 0 for any a ∈ {0, 1}. As a consequence, the controlled-NOT operation is the
inverse of itself:

CNOT−1
1→2 = CNOT1→2 (3.49)

where M−1 denotes the inverse of operation M (see §2.4.2).
If you play around a bit with QUIRKY, you may have noticed that you can combine the •

with arbitrary single-qubit operations, not just with the NOT operation. Indeed, we can define
a controlled-U operation for any single-qubit operation U. They are denoted by CU1→2 and
CU2→1, depending on which qubit is the control and which is the target. For example, CU1→2 is
defined as follows on the four basis states:

CU1→2 |00⟩ = |0⟩ ⊗ |0⟩ ,
CU1→2 |01⟩ = |0⟩ ⊗ |1⟩ ,
CU1→2 |10⟩ = |1⟩ ⊗U |0⟩ ,
CU1→2 |11⟩ = |1⟩ ⊗U |1⟩ .

You can quickly verify that for U = NOT we recover our definition of CNOT1→2 from before.

3.2.5 Entangled states

In Eq. (3.33) we used the tensor product to build a two-qubit state from two single-qubit states.
In §3.2.3, we saw that these product states are exactly those states that can be constructed by
applying local quantum operations to |00⟩ = |0⟩ ⊗ |0⟩ (a product state itself). Now, there also
exist two-qubit states that are not product states. We call these states entangled, and as we will
see they are very important for quantum computing.

How can we determine if a state is a product state or not? Even though quantum states are
specified by amplitudes and not by probabilities, we can use the same method that we used in
§3.1.8 for detecting whether a probability distribution is correlated. Given a two-qubit state in
the form (3.30), we first use Eq. (3.28) to compute

∆(|ψ⟩) = ψ00ψ11 − ψ01ψ10. (3.50)

Then, |ψ⟩ is a product state if and only if ∆(|ψ⟩) = 0. In this way, entangled states are analogous
to correlated probability distributions.

A simple but important example of an entangled two-qubit state is∣∣Φ+
〉
=

1√
2
|00⟩+ 1√

2
|11⟩ . (3.51)

This state is analogous to a pair of perfectly correlated random bits from Eq. (3.27). It is
entangled since

∆(
∣∣Φ+

〉
) =

1√
2
· 1√

2
− 0 · 0 =

1
2
̸= 0.

We call |Φ+⟩ the maximally entangled state of two qubits (although neither the reason for this
name nor the peculiar notation are very clear at this point).

How can we build entangled states? Just like when we wanted to build correlated states
of two bits, we can use the controlled-NOT operation to make two quantum bits interact. For
example, the following sequence of operations prepares the maximally entangled state |Φ+⟩:

61

https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%5D%7D

Let us quickly verify this:

CNOT1→2 (H ⊗ I) |00⟩ = CNOT1→2

(
1√
2
|00⟩+ 1√

2
|10⟩

)
=

1√
2
|00⟩+ 1√

2
|11⟩ .

Note that applying the CNOT directly to |00⟩, or for that matter to any other basis state, would
have not worked (see Eq. (3.46)).

Homework 3.6: Another entangled state

1. Verify that the state |ψ⟩ = 1
2 |01⟩+

√
3

2 |10⟩ is entangled.

Hint: Compute Eq. (3.50).

2. Find a sequence of operations in QUIRKY that prepares the state |ψ⟩.
Hint: You may need to create a suitable rotation.

3. What are the probabilities of measurement outcomes when measuring both qubits of
|ψ⟩? Use QUIRKY to confirm your result.

The maximally entangled state in Eq. (3.51) is one of a family of four states, called the Bell
states. The Bell states are defined as follows:

∣∣Φ+
〉
=

1√
2
|00⟩+ 1√

2
|11⟩ , (3.52)∣∣Φ−〉 = 1√

2
|00⟩ − 1√

2
|11⟩ , (3.53)∣∣Ψ+

〉
=

1√
2
|01⟩+ 1√

2
|10⟩ , (3.54)∣∣Ψ−〉 = 1√

2
|01⟩ − 1√

2
|10⟩ . (3.55)

They are named after John Steward Bell, who was one of the first to recognize the remarkable
features of quantum entanglement. How can we create these four Bell states? We saw above
that we can obtain |Φ+⟩ by applying a Hadamard and a CNOT operation to the basis state |00⟩.
It is an easy exercise to verify that the other three Bell states can be constructed similarly, that is,
by applying the same sequence of operations to the other three basis states. In other words, if
we define

UBell = CNOT1→2 (H ⊗ I) (3.56)

then ∣∣Φ+
〉
= UBell |00⟩ ,

∣∣Φ−〉 = UBell |10⟩ ,∣∣Ψ+
〉
= UBell |01⟩ ,

∣∣Ψ−〉 = UBell |11⟩ .

Exercise 3.12: Preparing Bell states

Draw how you would create the other three Bell states in QUIRKY: |Φ−⟩, |Ψ+⟩, and |Ψ−⟩.

Exercise 3.13: Discriminating Bell states

Alice’s donkey robot got lost while on an exploration mission! It wants to urgently let Alice
know of its position so that she can come to its rescue. The donkey is located in one of the
four neighborhoods surrounding the school. To communicate which one, the donkey sends
a two-qubit quantum message |x, y⟩, where x ∈ {0, 1} tells the x coordinate and y ∈ {0, 1}

62

tells the y coordinate of its location:

x

y

0 1

0

1

|Φ+⟩

|Ψ+⟩

|Φ−⟩

|Ψ−⟩

Unfortunately, Alice’s evil classmate Eve is jamming the signal and what Alice receives
instead is one of the four Bell states as shown above. Help Alice to correctly decode the
signal and locate her donkey robot! That is, find a sequence of operations that maps each of
the four Bell states back onto the corresponding basis state |x, y⟩.

3.2.6 Entanglement and correlations
�

Given the similarity between entangled states and correlated probability distributions, you may
wonder how these two notions are related. To compare them, let us discuss more generally the
relation between quantum states and probability distributions.

To start, suppose we have a single-qubit state |ψ⟩ = ψ0 |0⟩+ ψ1 |1⟩ and we measure it. Then
we know from §2.2 that we get as outcome a bit that is either zero or one, with probabilities ψ2

0
and ψ2

1. We can model this as a probability distribution

ψ2
0[0] + ψ2

1[1].

Intuitively, this models the situation where we measured the qubit but we did not actually look
at the outcome (if we did, we would not have a probabilistic bit but a deterministic one that is
either in state zero or in state one).

The same logic works just as well for two qubits. If we measure a two-qubit state |ψ⟩ =
ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩, we can describe the measurement outcomes by the
probability distribution

p = ψ2
00[00] + ψ2

01[01] + ψ2
10[10] + ψ2

11[11]. (3.57)

For example, if we prepare and measure the maximally entangled state |Φ+⟩, we obtain a
perfectly correlated pair of random bits in Eq. (3.27). We can verify this using QUIRKY:

Clearly the same is true if we measure the Bell state |Φ−⟩ instead. (How about the other two Bell
states |Ψ+⟩ or |Ψ−⟩? Measuring either of them produces perfectly anti-correlated bits, described
by the probability distribution 1

2 [01] + 1
2 [10].)

The preceding example was not an accident. In fact, the probability distribution p in
Eq. (3.57) that is obtained by measuring a two-qubit quantum state can be correlated only if the

63

https://video.uva.nl/media/0_kyva7wlc
https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22Measure%22%2C%22Measure%22%5D%2C%5B%22Chance2%22%5D%5D%7D

corresponding quantum state |ψ⟩ is entangled. To see this, assume that |ψ⟩ is a product state, so
that ∆(|ψ⟩) = 0. Then p is a product distribution since

∆(p) = p00 p11 − p01 p10 = ψ2
00ψ2

11 − ψ2
01ψ2

10

= (ψ00ψ11 − ψ01ψ10) (ψ00ψ11 + ψ01ψ10)

= ∆(|ψ⟩)
(
ψ00ψ11 + ψ01ψ10

)
= 0.

(3.58)

This proves the claim that correlated measurement outcomes imply presence of entanglement
in the measured state.

Note that generally quantum states are at least as useful as probabilistic bits because any
probability distribution can be obtained by measuring an appropriately chosen quantum state.
That is, given any probability distribution p we can always find a quantum state |ψ⟩ whose
measurement outcomes are distributed according to p. For example, for a two-bit distribution p
we can simply choose

|ψ⟩ = √p00 |00⟩+√p01 |01⟩+√p10 |10⟩+√p11 |11⟩ .

In particular, this means that entanglement is generally at least as useful as probabilistic
correlations since any correlated distribution over two probabilistic bits can be produced by
measuring some entangled two-qubit state.

3.2.7 The power of entanglement�
In fact, entangled quantum bits are truly more powerful than probabilistic bits! In the following
we will only have a glimpse, but we will see many more examples in the coming weeks.

Let us illustrate the power of entanglement by a little story which follows up on Exercise 3.13.
There, you helped Alice decode the position of her donkey robot, which was in one out of four
locations, labeled by two bits a, b ∈ {0, 1}. Alice does not have time to pick up the donkey, so
she wants to send the position onwards to Bob. Unfortunately, Alice is running low on her
quantum mobile phone plan, so she can only send a single qubit to Bob. But sending a single
quantum bit will certainly not be enough to perfectly communicate two bits. We know this
because the only way for Bob to extract information is by measuring the qubit – but from the
measurement he only learns a single bit and then the original state of the qubit is gone.

Happily enough, Alice and Bob had the foresight of sharing a maximally entangled state
|Φ+⟩. By this we mean that Alice is in possession of the first qubit and Bob is in possession of
the second qubit. Can we help Alice send the donkey’s location (i.e., the two bits a and b) by
transmitting a single qubit? This can indeed be done and the key ingredient is the following:

Exercise 3.14: Transforming one Bell state into any other

Show that Alice can, by applying local operations on her qubit alone, transform the maxi-
mally entangled state |Φ+⟩ into any of the three other Bell states |Φ−⟩, |Ψ+⟩, and |Ψ−⟩.

It is now clear how Alice and Bob can solve the challenge. Assume that Alice and Bob have
beforehand agreed on a mapping between the four possible values of the two bits [ab] and
the four Bell states (say, [00] corresponds to |Φ+⟩, [01] corresponds to |Ψ+⟩, and so on). Using
Exercise 3.14, Alice first applies an operation on her part of the maximally entangled state to
turn the state into the Bell state that corresponds to the donkey’s location. Next, she sends her
quantum bit over to Bob. Now Bob has both quantum bits in his possession and he knows that
they are in one of the four Bell states. Thus, he can simply apply the same operations as in
Exercise 3.13 and measure the two qubits to figure out the donkey robot’s location.

The procedure we have just described is known as the superdense coding protocol, since we
are transmitting two deterministic bits by sending a single quantum bit (at the cost of using
up one maximally entangled state shared between Alice and Bob). Could Alice and Bob have

64

https://video.uva.nl/media/0_z774uy4y

just as well used probabilistic bits instead of an entangled state to solve this challenge (e.g., a
pair of perfectly correlated bits)? Interestingly, this is not the case. Thus, superdense coding
demonstrates that quantum entanglement provides an advantage for communication tasks.

In the following homework problem you can encounter another famous situation in which
quantum entanglement provides an unambiguous advantage. The problem may perhaps look a
bit daunting – but this is mostly because we could not resist telling a little story around it. As
usual, do not hesitate to ask any questions on Discord!

Homework 3.7: An entangled game (challenging)

Alice and Bob are bored in class, so they ask their quantum mechanics teacher Ronald
to pose them a challenging puzzle. After only a brief pause, Ronald explains to them an
interesting game. The goal of the game is for Alice and Bob to cooperate as well as possible
(they are not playing against each other). However, they are not allowed to communicate
with each other while the game is going on! The rules of the game are as follows:

• To start, Ronald secretly tosses two fair coins. He tells Alice the result of the first coin
toss (bit x) and Bob the result of the second coin toss (bit y). We call these input bits.

• After receiving the bits, Alice and Bob each have to answer with a bit of their own
(bits a and b).

• Alice and Bob win the game under the following condition: if x = y = 1 then they
win the game if a ̸= b; otherwise, they win the game if a = b.

RonaldAlice Bob

x y

a b

x y Winning condition
0 0 a = b
0 1 a = b
1 0 a = b
1 1 a ̸= b

Before the game starts, Alice and Bob briefly get together to discuss their strategy. First,
they consider simply applying two functions f , g : {0, 1} → {0, 1} on their input bits x and
y and compute their answers as follows: a = f (x) and b = g(y).

1. Show that in this case they can win the game with probability 75%, but no higher.

Next, they consider coordinating their play using shared randomness. Bob suggests using
more complicated functions f and g with an extra binary argument and to compute their
answers as follows: a = f (x, r) and b = g(y, s), where r and s are two random bits jointly
described by some two-bit probability distribution.

2. Show that they still cannot win with probability higher than 75%, no matter what the
functions f and g are and what the joint distribution on the bits r and s is.

It begins to dawn on our protagonists that surely Ronald had a quantum-mechanical
strategy in mind. Alice has an ingenious idea and proposes that they should share a
maximally entangled state |Φ+⟩ before the game starts. She proposes that upon receiving
their bits, she will rotate her qubit by some angle θx (that depends on her input bit x) and
measure it to obtain her answer a, while Bob should instead rotate by some other angle ωy
(depending on his input bit y) and then measure to obtain his answer b.

3. Write down the state after Alice and Bob applied their rotations in the form (3.30).
Confirm that the probability of winning the game is

1
4
(
cos2(θ0 −ω0) + cos2(θ0 −ω1) + cos2(θ1 −ω0) + sin2(θ1 −ω1)

)
.

65

Hint: Use the trigonometric formulas from Eqs. (2.16) and (2.22).

Alice and Bob quickly figure out that θ0 = 0, θ1 = π/4, and ω0 = π/8 are good choices,
but they are struggling with the last angle and time is quickly running out.

4. Find an angle ω1 such that they win the game with probability higher than 75%.

In the first two parts of the homework, you showed that any strategy using classical bits
cannot win the game with probability higher than 75%. This is an example of a Bell inequality.
The version above goes back to John Clauser, Michael Horne, Abner Shimony, and Richard
Holt, so the game that Alice and Bob play with Ronald is often called the CHSH game. The
quantum mechanical strategy that you discovered in the homework violates this Bell inequality.
It is an empirical fact that Bell inequalities can indeed be violated by quantum mechanics. This
was first demonstrated by Alain Aspect in the 80s and recently confirmed under very stringent
conditions in a beautiful experiment by Ronald Hanson and his team at TU Delft.

Interestingly, Alice and Bob can not only play the CHSH game better using a shared
maximally entangled state, but they can in fact convince Ronald that they must be using some
quantum tricks to play the game so well. Indeed, since using only probabilistic strategies they
cannot win the game with more than 75% probability, if they somehow succeed winning it
more often then the only possible explanation for this is that they must be using something
more powerful. In fact, using some further tricks they can even convince Ronald that they
must be using the maximally entangled state and applying the rotations with the particular
angles. Effectively, this means that they can prove to Ronald in an irrefutable way that they
have small quantum computers that can manipulate single qubits and share entanglement. This
is a very important observation, since it lets you use the CHSH game to verify that somebody
genuinely has built a quantum computer! Indeed, if two of your classmates would claim that
they have each built a quantum computer in their garages, you could simply ask them both to
play together this game against you. If they manage to win with probability that is significantly
larger than 75%, you would know that they indeed are not lying to you and they have real
quantum computers. But if they cannot win it with more than 75% then you would easily refute
their claims. Isn’t this amazing?

These types of verification procedures is something that researchers around the world
are currently actively working on. This is a very important problem because various large
companies, such as IBM, Google, and Microsoft are trying to build a quantum computer. If
they claim they have built one, you would probably believe them more than your classmates.
However, it is still great if you can actually verify this!

66

3.3 Exercise solutions

Solution to Exercise 3.2

1. Let us denote the probability distributions of Alice‘ two coin flips by p. We use
Fig. 3.3 to figure out the probabilities. We know that Alice first coin flip is distributed
according to u, which means that if we measure the first bit then we should get both
outcomes with probability 1/2:

p00 + p01 =
1
2

, p10 + p11 =
1
2

.

Next, we know that if the first coin flip gave outcome 0 then the state of the second bit
should be described by the coin q. Thus we must have

p00[0] + p01[1]
p00 + p01

=
3
4
[0] +

1
4
[1],

from which we deduce that p00 = 3
8 and p01 = 1

8 . Similarly, if the first coin flip gave
outcome 1 then the state of the second bit is described by coin r, so

p10[0] + p11[1]
p00 + p01

=
1
3
[0] +

2
3
[1],

hence p10 = 1
6 and p11 = 2

6 . Together,

p =
3
8
[00] +

1
8
[01] +

1
6
[10] +

2
6
[11],

2. The value of Bob’s bit is the same as the outcome of Alice’ second coin flip, so we
simply follow Fig. 3.3 to compute the probability of outcomes when measuring the
second bit. Thus, the probability that Bob’s outcome is 0 is

p00 + p10 =
3
8
+

1
6
=

13
24

and the probability that his outcome is 1 is 1− 13
24 = 11

24 . We can write this as the
probability distribution

13
24

[0] +
11
24

[1].

3. Again we use Fig. 3.3. If the second bit is measured and the result is outcome 0 then
the state of the first bit is given by

p00[0] + p10[1]
p00 + p10

=
9
13

[0] +
4

13
[1].

Thus it is more likely that Alice’ first coin flip shows 0.

Similarly, if the result of measuring the second bit is 1 then the state of the first bit is
described by

p01[0] + p11[1]
p01 + p11

=
3
11

[0] +
8

11
[1].

In this case, it is more likely that Alice’ first coin flip shows 1.

67

Solution to Exercise 3.1

NOT1


p00
p01
p10
p11

 =


p10
p11
p00
p01

 .

Solution to Exercise 3.3

SWAP


p00
p01
p10
p11

 =


p00
p10
p01
p11

 .

Solution to Exercise 3.4

1. CNOT2→1[a, b] = [a⊕ b, b] = [b⊕ a, b].

2. This can be done by first applying a SWAP, then a CNOT1→2, and finally another
SWAP. Indeed, using Eqs. (3.17) and (3.19),

SWAP(CNOT1→2(SWAP[a, b])) = SWAP(CNOT1→2[b, a])
= SWAP[b, b⊕ a] = [b⊕ a, b].

Solution to Exercise 3.5
Using Fig. 3.3, the state of the second bit after the measurement can be computed as

pa0[0] + pa1[1]
pa0 + pa1

=
qar0[0] + qar1[1]

qar0 + qar1
=

r0[0] + r1[1]
r0 + r1

= r0[0] + r1[1] = r,

where we cancelled qa and used r0 + r1 = 1.

Solution to Exercise 3.6
The state before the controlled-NOT operation is(

1
2
[0] +

1
2
[1]
)
⊗ [0] =

1
2
[00] +

1
2
[10].

After applying the controlled-NOT operation, we obtain

CNOT1→2

(
1
2
[00] +

1
2
[10]

)
=

1
2
[00] +

1
2
[11].

68

Solution to Exercise 3.7

1.

|+⟩ ⊗ |−⟩ =
(

1√
2
|0⟩+ 1√

2
|1⟩
)
⊗
(

1√
2
|0⟩ − 1√

2
|1⟩
)

=
1
2
|00⟩ − 1

2
|01⟩+ 1

2
|10⟩ − 1

2
|11⟩ .

2.

1
2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) = 1√

2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩) = |+⟩ ⊗ |+⟩ .

So this is indeed a product state.

Solution to Exercise 3.8
We start with |00⟩. After the NOT on the second qubit, we get |01⟩. The Hadamard on the
first qubit transforms this into |+⟩ ⊗ |1⟩ = 1√

2
|01⟩+ 1√

2
|11⟩ and with the final Z operation

we obtain the following two-qubit state right before the measurement:

1√
2
|01⟩ − 1√

2
|11⟩ .

Thus, we get either 01 or 11, with probability 50% each.

Solution to Exercise 3.9
We only show how to verify Eq. (3.39) (the other equation can be derived completely
analogously). For this, let us write |α⟩ = α0 |0⟩+ α1 |1⟩ and |β⟩ = β0 |0⟩+ β1 |1⟩. Then,

U1 (|α⟩ ⊗ |β⟩) = U1 (α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩)
= α0β0U1 |00⟩+ α0β1U1 |01⟩+ α1β0U1 |10⟩+ α1β1U1 |11⟩
= α0β0U |0⟩ ⊗ |0⟩+ α0β1U |0⟩ ⊗ |1⟩+ α1β0U |1⟩ ⊗ |0⟩+ α1β1U |1⟩ ⊗ |1⟩
= α0U |0⟩ ⊗ (β0 |0⟩+ β1 |1⟩) + α1U |1⟩ ⊗ (β0 |0⟩+ β1 |1⟩)
= α0U |0⟩ ⊗ |β⟩+ α1U |1⟩ ⊗ |β⟩
= (α0U |0⟩+ α1U |1⟩)⊗ |β⟩
= U |α⟩ ⊗ |β⟩

by Eq. (3.33), the definition of U1, and linearity.

69

Solution to Exercise 3.10

1. The state can be written as

1
2
(|00⟩+ |01⟩ − |10⟩ − |11⟩) = 1√

2
(|0⟩ − |1⟩)⊗ 1√

2
(|0⟩+ |1⟩) .

2. This is equal to

H |1⟩ ⊗ H |0⟩ = H NOT |0⟩ ⊗ H |0⟩ = (H NOT⊗ H) |00⟩ .

3.

Solution to Exercise 3.11
To show that HZ ̸= ZH it is enough to verify that they give different results when applied
to the |0⟩ state. Indeed:

HZ |0⟩ = H |0⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ ,

ZH |0⟩ = Z
(

1√
2
|0⟩+ 1√

2
|1⟩
)
=

1√
2
|0⟩ − 1√

2
|1⟩ .

Solution to Exercise 3.12
• |Φ−⟩:

• |Ψ+⟩:

• |Ψ−⟩:

70

https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22NOT%22%5D%2C%5B%22H%22%2C%22H%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22NOT%22%5D%2C%5B1%2C%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%5D%2C%5B1%2C%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22NOT%22%5D%2C%5B1%2C%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%5D%7D

Solution to Exercise 3.13
Note that this is the same as inverting the operation UBell in Eq. (3.56). Recall that UBell =
CNOT1→2 (H ⊗ I). This is a composite operation, so recall from Exercise 2.5 that

U−1
Bell = (H ⊗ I)−1 CNOT−1

1→2 = (H−1 ⊗ I)CNOT−1
1→2.

Recall from Eq. (3.49) that CNOT1→2 is the inverse of itself, i.e., CNOT−1
1→2 = CNOT1→2. It

is also true that H−1 = H (this holds for any reflection, in fact). This implies that we can
undo UBell by applying the same two operations but in reverse order:

U−1
Bell = (H ⊗ I)CNOT1→2.

That is, we first apply CNOT1→2 and then H on the first qubit, as in:

Solution to Exercise 3.14
Note from Eqs. (3.52) to (3.55) that the Bell states differ only by bit flips and signs. Recall
that we can flip a bit using a local NOT operation and that we can introduce some signs
by applying local Z operations, where Z is defined in Eq. (2.12). To create |Φ−⟩, Alice can
simply apply a Z operation on her qubit:

(Z⊗ I)
∣∣Φ+

〉
= (Z⊗ I)

(
1√
2
|00⟩+ 1√

2
|11⟩

)
=

1√
2
|00⟩ − 1√

2
|11⟩ =

∣∣Φ−〉 .

To create |Ψ+⟩, Alice instead applies an NOT operation on her qubit:

(NOT⊗ I)
∣∣Φ+

〉
= (NOT⊗ I)

(
1√
2
|00⟩+ 1√

2
|11⟩

)
=

1√
2
|10⟩+ 1√

2
|01⟩ =

∣∣Ψ+
〉

.

To create |Ψ−⟩, Alice applies first an NOT operation and then a Z operation on her qubit:

(Z NOT⊗ I)
∣∣Φ+

〉
= (Z⊗ I)

(
1√
2
|10⟩+ 1√

2
|01⟩

)
= − 1√

2
|10⟩+ 1√

2
|01⟩ =

∣∣Ψ−〉 .

71

https://www.quantum-quest.org/quirky/QuirkyQuest3Q.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22H%22%5D%5D%7D

72

Quest 4: Quantum composer

Last week, we discussed the states of two quantum bits and which operations you can
perform with them. We also learned that there exist entangled quantum states and that they can
be used to communicate more efficiently (e.g., by transmitting two bits when sending only a
single qubit) and to outperform deterministic or probabilistic strategies at a certain game. This
week, we will allow ourselves an arbitrary number of qubits and start composing quantum
circuits consisting of many operations and use them to solve interesting problems.

4.1 Quantum circuits

When you have many qubits and you are applying lots of operations on them, you can easily
lose track of what is going on. Just like a composer would write sheet music to neatly arrange
the instructions for each musician of an orchestra telling them exactly what note to play at
any given time, so do quantum circuits provide a nice pictorial description of what operation
should be applied to any qubit at any given time. Different operations are like different notes
and different qubits are like different musicians in an orchestra!

Unlike in an orchestra, however, some quantum operations affect two (or sometimes even
three!) qubits at a time. This would be like asking the guitar player to strum the violin while the
violinist is bowing the guitar! Such interactions between musicians (or qubits) can be a lot of
fun and produce a much richer and complicated sound. However, they can be hard to perform
in practice (as you can imagine, the violinist might have to run across the stage to reach the
guitar player!). In addition, during this hectic collaboration between the two musicians, the
violinist’s hair might get entangled with guitar player’s large earrings forcing them to play the
rest of the song together.

The more interactions you perform between the qubits, the more entangled they will usually
get. At the end of the song, typically all qubits end up being entangled with each other in such
a way that it is completely impossible to tell them apart. The only way to sort them out and get
them back to any reasonable state is by measuring them! Indeed, this is how a general quantum
computation proceeds. More formally, a quantum circuit consists of three ingredients:

1. an initial state, which is typically |0⟩ on each of the qubits,

2. a sequence of quantum operations, where each operation typically acts on a few qubits at
a time (usually, one or two qubits),

3. measurements to read the information out (typically we measure all qubits).

We can represent quantum circuits graphically using the same pictures that we already know
from QUIRKY. When discussing quantum circuits, operations and measurements are often
called quantum gates (e.g., ‘Hadamard gate’ instead of ‘Hadamard operation’). Let us now look
more closely at the three ingredients and see how they play out in a large orchestra of qubits.

4.1.1 Many quantum bits

The rules that we learned so far for one and two qubits generalize very naturally to quantum
system of many qubits. For example, an arbitrary state of three qubits can be written as follows:

|ψ⟩ = ψ000 |000⟩+ ψ001 |001⟩+ ψ010 |010⟩+ ψ011 |011⟩
+ ψ100 |100⟩+ ψ101 |101⟩+ ψ110 |110⟩+ ψ111 |111⟩ ,

(4.1)

73

where ψijk ∈ [−1, 1] and the squares of these amplitudes again sum to one, i.e.,

ψ2
000 + ψ2

001 + ψ2
010 + ψ2

011 + ψ2
100 + ψ2

101 + ψ2
110 + ψ2

111 = 1.

Note that, in total, there are 8 = 23 amplitudes, one for each bitstring of three bits. We can also
think of |ψ⟩ as a vector with eight entries:

|ψ⟩ =



ψ000
ψ001
ψ010
ψ011
ψ100
ψ101
ψ110
ψ111


.

More generally, a state of n qubits can be specified by using 2n amplitudes ψa1,...,an , one for
each bitstring of n bits:

|ψ⟩ = ψ00...00 |00 . . . 00⟩+ ψ00...01 |00 . . . 01⟩+ . . . + ψ11...11 |11 . . . 11⟩ (4.2)

Again, each amplitude ψa1,...,an should be in [−1, 1] and their squares should sum to one:

ψ2
00...00 + ψ2

00...01 + . . . + ψ2
11...11 = 1 (4.3)

If some of the amplitudes ψa1,...,an are zero, we can simply leave them out. For example, the
five-qubit quantum state

1√
2
(|00000⟩+ |11111⟩)

has 32 amplitudes, of which 30 are zero.
Since there are 2n amplitudes, we can also think of |ψ⟩ as a vector in a 2n-dimensional space.

What does Eq. (4.3) mean geometrically? For a single qubit, we saw in §2.1.2 that the states
correspond to points on the unit circle, i.e., two-dimensional vectors of length one. By the
Pythagorean theorem, it is true in any dimension that the sum of squares of a vector’s all entries
is the square of its length. Thus, Eq. (4.3) means geometrically that |ψ⟩ corresponds to a vector
of length one or a unit vector in a 2n-dimensional space.

Note that the number of amplitudes grows very rapidly with the number of qubits. This
explains why it quickly becomes impossible to directly store quantum states on a classical
computer. For example, to represent a quantum state of n = 300 qubits, one would need more
amplitudes than there are atoms in the observable universe! Because of this, you cannot have more
than 10 qubits in QUIRKY because we don’t want your web browser to run out of memory!

As in Eq. (3.33), we can use the tensor product “⊗” to combine quantum states on any
number of qubits. If we have two basis states, we define their tensor product simply by
concatenating the bitstrings. Generalizing the two-qubit case from Eq. (3.32),

|a1, . . . , an⟩ ⊗ |b1, . . . , bm⟩ = |a1, . . . , an, b1, . . . , bm⟩ . (4.4)

For example,

|101⟩ ⊗ |01⟩ = |10101⟩ .

In general, if |α⟩ is an arbitrary quantum state of n qubits and |β⟩ is an arbitrary quantum state
of m qubits, then their tensor product or combined state is a state of n + m qubits. To compute

74

this state we simply “multiply out” by using the distributivity law and then apply Eq. (4.4) for
each term. For example, the tensor product of two maximally entangled states is the following:∣∣Φ+

〉
⊗
∣∣Φ+

〉
=

(
1√
2
|00⟩+ 1√

2
|11⟩

)
⊗
(

1√
2
|00⟩+ 1√

2
|11⟩

)
=

1√
2

1√
2
|00⟩ ⊗ |00⟩+ 1√

2
1√
2
|00⟩ ⊗ |11⟩+ 1√

2
1√
2
|11⟩ ⊗ |00⟩+ 1√

2
1√
2
|11⟩ ⊗ |11⟩

=
1
2
|0000⟩+ 1

2
|0011⟩+ 1

2
|1100⟩+ 1

2
|1111⟩ .

Exercise 4.1: Tensoring Bell states

Compute the tensor product |Φ−⟩ ⊗ |Ψ−⟩ of the two Bell states in Eqs. (3.53) and (3.55).

4.1.2 Operations

What are the quantum operations that we can perform if we have multiple qubits? For one, we
can apply any one-qubit or two-qubit operation discussed in Sections 2 and 3 to any chosen
qubits of a many-qubit state. This works as in §3.2.2.

For example, if U is a single-qubit operation, that is, a rotation or a reflection, then we can
define a quantum operation, denoted U1, that corresponds to applying U to the first qubit of an
n-qubit state. It is defined as follows on the basis states:

U1 |a1, . . . , an⟩ = U |a1⟩ ⊗ |a2, . . . , an⟩ .

Note that the tensor product combines the single-qubit state U |a1⟩ with the (n− 1)-qubit basis
state |a2, . . . , an⟩ to form a state of n qubits, as we desire. As usual, we extend U1 by linearity to
general quantum states of n qubits. We similarly define the quantum operations U2, U3, etc.
that correspond to applying U to the second, third, etc. qubit.

Exercise 4.2: Applying a single-qubit operation

Compute the result of applying the Hadamard operation on the second qubit of the three-
qubit state |Φ+⟩ ⊗ |1⟩. In other words, compute H2 (|Φ+⟩ ⊗ |1⟩). Write your result in the
form of Eq. (4.1).

We can similarly figure out how a two-qubit operation can be applied to selected two qubits
out of n. We will mostly be interested in controlled-NOT operations: CNOTk→l with k ̸= l is
the operation that flips the l-th qubit (the target qubit) depending on the value of the k-th qubit
(the control qubit). Mathematically, its action on basis states is as follows:

CNOTk→l |a1, . . . , al , . . . , an⟩ = |a1, . . . , al ⊕ ak, . . . , an⟩ ,

and we extend this prescription by linearity to arbitrary n-qubit states. For example, the
controlled-NOT operation CNOT1→3 is defined as follows for four-qubit basis states:

CNOT1→3 |a1, a2, a3, a4⟩ = |a1, a2, a3 ⊕ a1, a4⟩ .

What does all this look like in QUIRKY? Let’s go to

https://www.quantum-quest.org/quirky

75

https://www.quantum-quest.org/quirky

Figure 4.1: QUIRKY for Quest 4.

and click on “Quest 4” to find out. Your web browser will look similarly to Fig. 4.1.
Hold on, it seems like QUIRKY looks exactly the same as last week!? However, as soon as

you pick up an operation in the toolbox, a new wire will appear at the bottom – allowing you to
act on an additional qubit. (Of course, we have limited the number of qubits to some reasonable
number that your classical computer is happy to simulate!) Why don’t you try this now and
create a CNOT1→3 operation, as in the following picture?

When quantum operations act on separate qubits, we can perform them in parallel. As in
§3.2.3, we re-use the tensor product symbol for this. If U is a quantum operation on n qubits
and V a quantum operation on m qubits then we can define a quantum operation U ⊗V on
(n + m) qubits which corresponds to performing both operations in parallel. On basis states,

(U ⊗V) |a1, . . . , an, b1, . . . , bm⟩ = U |a1, . . . , an⟩ ⊗V |b1, . . . , bm⟩ , (4.5)

and we extend this by linearity to arbitrary states. It follows as a consequence of Eq. (4.5) that

(U ⊗V)(|α⟩ ⊗ |β⟩) = U |α⟩ ⊗V |β⟩ ,

but only if |α⟩ is an n-qubit state and |β⟩ and m-qubit state! In the following exercise, the two
tensor product symbols are not aligned in this way, so you cannot use this rule!

Exercise 4.3: Misaligned tensor products

Consider the three-qubit state (CNOT2→1 ⊗ I)(|0⟩ ⊗ |Φ−⟩).
1. How can you build this state using QUIRKY?

76

https://www.quantum-quest.org/quirky/QuirkyQuest4.html
https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C1%2C%22%E2%80%A2%22%5D%5D%7D

2. Write out the state in the form of Eq. (4.1).

We can use tensor product several times to iteratively build up larger and larger quantum
operations. Here are three examples for various numbers of qubits:

1. I ⊗ I ⊗U ⊗ I is the same four-qubit operation as U3,

2. I ⊗CNOT1→2 ⊗ I ⊗ I is the controlled-NOT operation CNOT2→3 for five qubits,

3. Z⊗ I ⊗ X is the quantum operation that applies Z on the first qubit and, in parallel, X on
the third qubit (we could also write this as either Z1X3 or X3Z1).

4.1.3 The most general quantum operations

What are the most general operations that we can apply to quantum states on n qubits? In fact,
any operation that has the following three properties:

1. it is linear,

2. it sends quantum states to quantum states,

3. it is invertible

is a valid quantum operation!

Exercise 4.4: Toffoli
Define the Toffoli operation on three qubits by

T |a, b, c⟩ = |a, b, c⊕ ab⟩

on basis states (ab is the product of the two bits a, b ∈ {0, 1}, and⊕was defined in Eq. (3.20)),
and extend it by linearity to arbitrary three-qubit states. Show that T sends quantum states
to quantum states, and that T is invertible.

Note: T inverts the third bit of the basis vector if and only if the first two bits are both set to
one – so it is like a ‘doubly controlled’ NOT operation.

Exercise 4.4 shows that the Toffoli operation is a valid quantum operation of three qubits.
Interestingly, it is actually possible to write T as a sequence of one- and two-qubit operations.
In fact, this is possible for any quantum operation of n qubits – but we will not do it in this class
since it takes an experienced quantum composer to understand how this can be done!

4.1.4 Circuit identities

When you are dealing with a very complicated quantum circuit, it is good to know some tricks
for simplifying things. Such tricks can not only make it easier to understand what the circuit
does but also make the circuit more efficient and thus faster to execute on a quantum computer.
Let us look at a few simple examples of such tricks involving just a single qubit.

Recall from §2.4.3 that each single-qubit operation is either a rotation or a reflection. It is
convenient to represent the action of these operations visually by recalling from §2.1.2 that qubit
states form a circle. One immediate observation you can make is that if any fixed reflection
is applied twice on the same qubit, then you end up back with the original state. Indeed, this
is visually clear since reflecting about the same axis twice restores everything as it was (for
example, you can see this in Fig. 2.4 for the NOT operation). In particular, this is the case for the
Hadamard operation H, which we know is a reflection because of Eq. (2.21). Let us verify this
geometric intuition by doing a small calculation, and also check that the Hadamard gate lets
you convert between the NOT and Z gates.

77

Exercise 4.5: Z and NOT
Recall from Eq. (2.20) that the Hadamard gate H acts as follows:

H |0⟩ = 1√
2
(|0⟩+ |1⟩) = |+⟩ , H |1⟩ = 1√

2
(|0⟩ − |1⟩) = |−⟩ .

1. Verify that applying H again would get you back to |0⟩ and |1⟩. That is, check that

H |+⟩ = |0⟩ , H |−⟩ = |1⟩ .

2. Verify that H Z H = NOT where Z is defined in Eq. (2.12).

3. Verify that H NOT H = Z.

Another interesting question to ask if what happens if you apply two arbitrary rotations or
reflections consecutively? We know that what you get should again be either a rotation or a
reflection. But which one is it and what is the new angle? Two consecutive rotations are simply
the same as a single rotation by the sum of the two angles, i.e., U(φ2)U(φ1) = U(φ1 + φ2).
The following exercise gives you a rule for simplifying two consecutive reflections to a single
rotation.

Exercise 4.6: Reflections and rotations (optional)

Verify that a product of two reflections is a rotation. That is, show that

V(θ2)V(θ1) = U(θ),

for some angle θ. Can you express the angle θ in terms of θ1 and θ2?

Hint: Use Eq. (2.19) and use that U(φ2)U(φ1) = U(φ1 + φ2).

You can work out the remaining two cases that involve one rotation and one reflection on
your own, and check that they both result in a reflection V(θ), for some angle θ.

4.1.5 Measuring all qubits

Once we are done with applying operations that transform our quantum bits, we would like to
get some information out. As before, the only way of doing this is by measuring the qubits.

What are the rules for measuring a quantum state of n qubits? If we measure all n qubits
then we obtain n bits as the outcome, i.e., a bitstring a1 . . . an. As before, the probability of
obtaining any particular outcome a1 . . . an is the squared amplitude:

pa1,...,an = ψ2
a1,...,an

. (4.6)

In QUIRKY, we can measure all qubits as before, by adding one measurement box for each
qubit. To view the probabilities of the measurement outcomes, we can add a probability display
– but we have to make sure to resize it suitably so that it applies to all wires. Try reproducing
the following example:

78

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22NOT%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22Measure%22%2C%22Measure%22%2C%22Measure%22%5D%2C%5B%22Chance3%22%5D%5D%7D

This sequence of QUIRKY operations prepares the state

1√
2
|000⟩+ 1√

2
|111⟩ (4.7)

and measures all three qubits. Can you see how this works?

4.1.6 Measuring some of the qubits only

Naturally, we can also measure only a subset of the qubits. (We didn’t even discuss this for
two qubits last week, since there was already plenty to talk about.) For example, assume that
you have a three-qubit quantum state |ψ⟩, like the one in Eq. (4.1), but instead of measuring
all three qubits you measure only the first qubit. What is the probability pa of obtaining
outcome a ∈ {0, 1}? It is simply the sum of all probabilities in Eq. (4.6) that correspond to a
string that starts with a:

pa = ψ2
a00 + ψ2

a01 + ψ2
a10 + ψ2

a11. (4.8)

For example, if we measure the first qubit of the state

1√
8
|000⟩+

√
2
8
|010⟩+

√
5
8
|111⟩

then we obtain outcome 0 with probability 1/8 + 2/8 = 3/8.
We can measure individual qubits using QUIRKY simply by adding only a single measure-

ment on the wire that we are interested in. To view the probability of measurement outcomes,
drag a probability display onto the circuit. Why don’t you give it a try right now? For example,
the following sequence of operations prepares the state in Eq. (4.7) and measures only the first
qubit:

(4.9)

Indeed, following Eq. (4.8) we should obtain 0 and 1 with equal probability.

Once you measured the first qubit and obtained some outcome a ∈ {0, 1}, what is the quan-
tum state of the second and the third qubit? Following the same procedure as for probabilistic
bits in §3.1.3, we first collect all terms of |ψ⟩ where the first qubit is in the state that corresponds
to the outcome of interest:

ψa00 |a00⟩+ ψa01 |a01⟩+ ψa10 |a10⟩+ ψa11 |a11⟩ .

Next, we leave out the first qubit in all four terms, since it was measured:

ψa00 |00⟩+ ψa01 |01⟩+ ψa10 |10⟩+ ψa11 |11⟩ .

Finally, we normalize this so that we obtain a valid two-qubit state. For this, we want to find a
number c such that ψa00

c |00⟩+ ψa01
c |01⟩+ ψa10

c |10⟩+ ψa11
c |11⟩ is a qubit state, i.e.,(

ψa00

c

)2

+

(
ψa01

c

)2

+

(
ψa10

c

)2

+

(
ψa11

c

)2

= 1.

The overall sign is not important, so we can simply use

c =
√

ψ2
a00 + ψ2

a01 + ψ2
a10 + ψ2

a11,

79

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22NOT%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C%22Chance1%22%5D%5D%7D

which is the square root of the probability in Eq. (4.8).
To summarize, if you measure the first qubit of a three-qubit state as in Eq. (4.1), you obtain

outcome a ∈ {0, 1} with probability

pa = ψ2
a00 + ψ2

a01 + ψ2
a10 + ψ2

a11 (4.10)

and the resulting two-qubit state |ψa⟩ on the remaining two qubits is

|ψa⟩ =
ψa00 |00⟩+ ψa01 |01⟩+ ψa10 |10⟩+ ψa11 |11⟩√

ψ2
a00 + ψ2

a01 + ψ2
a10 + ψ2

a11

. (4.11)

What does this mean in the situation of (4.9), where we prepare the state 1√
2
|000⟩+ 1√

2
|111⟩

and then measure the first qubit? If the measurement outcome is 0 (which happens with
probability 1/2), the remaining two qubits are in state

1√
2
|00⟩√

1
2

= |00⟩ .

If instead the outcome is 1 then the remaining qubits are similarly in state |11⟩.
Since measuring one qubit out of many can be quite tricky, let us discuss another method for

doing this. Consider again a general three-qubit state |ψ⟩ like the one in Eq. (4.1) and assume
that we want to measure the first qubit. We can rewrite the eight terms in the expression of |ψ⟩
as follows:

|ψ⟩ = √p0 |0⟩ ⊗
ψ000 |00⟩+ ψ001 |01⟩+ ψ010 |10⟩+ ψ011 |11⟩√

p0

+
√

p1 |1⟩ ⊗
ψ100 |00⟩+ ψ101 |01⟩+ ψ110 |10⟩+ ψ111 |11⟩√

p1
.

(4.12)

We can now rewrite this as

|ψ⟩ = √p0 |0⟩ ⊗ |ψ0⟩ +
√

p1 |1⟩ ⊗ |ψ1⟩ , (4.13)

where the pa are probabilities (namely, the ones from Eq. (4.10)) and the |ψa⟩ are quantum states
(the two-qubit states from Eq. (4.11)).

In fact, whenever you manage to write your quantum state in the form of Eq. (4.13) then
you can simply read off the probabilities of the measurement outcomes in this way, and also see
what the state on the remaining two qubits is after the measurement. For example,

1√
2
|000⟩+ 1√

2
|111⟩ = 1√

2
|0⟩ ⊗ |00⟩+ 1√

2
|1⟩ ⊗ |11⟩ ,

This confirms that in our running example (4.9), both outcomes happen with probability 1/2
and that the state of the remaining qubits is either |00⟩ or |11⟩, depending on the outcome. This
method of first grouping terms and then normalizing them is rather intuitive and generally
very useful. However, when using it you should be very careful not to forget to correctly
normalize the states! That is, whatever constants

√
pa you pull out in front of the two basis

states in Eqs. (4.12) and (4.13), they should satisfy p0 + p1 = 1 and the states |ψ0⟩ and |ψ1⟩ on
the remaining qubits should be properly normalized, see Eq. (4.3).

We can proceed completely analogously if we have more than three qubits, or we want to
measure another qubit than the first, or if we want to measure more than a single qubit! For
example, suppose we were to measure the first two qubits of a general three-qubit state |ψ⟩

80

from Eq. (4.1). Then the measurement outcome consists of two bits, a and b, occurring with
probabilities

pa,b = ψ2
ab0 + ψ2

ab1, (4.14)

and the remaining qubit after the measurement is in state

|ψa,b⟩ =
ψab0 |0⟩+ ψab1 |1⟩√

ψ2
ab0 + ψ2

ab1

. (4.15)

Exercise 4.7: Two out of three
What are the probabilities of outcomes if you measure the first two qubits of the three-qubit
state in Eq. (4.7)? Use QUIRKY to confirm your result.

If we measure some of the qubits but not others, we will often want to use measurement
outcomes to determine if an operation should be applied to the remaining qubits or not. For
example, suppose that in the situation of (4.9) you want to reset the remaining two qubits to
state |00⟩. Now, if the measurement outcome is zero, nothing needs to be done. But if the
measurement outcome is one, then we know that the two remaining qubits are in state |11⟩ and
we would like to reset them back to |00⟩. This can be done by applying a NOT operation to
each of them. However, how do we know whether we should really apply this operation or not
because this depends on the earlier measurement outcome on the first qubit. Hence, we would
like to apply it only when the measurement outcome is 1. In other words, we want to apply a
controlled-NOT gate, where the control is now a classical bit (the outcome of the measurement)
but the target is still quantum.

In QUIRKY we can realize this as you would expect, namely by using a classical bit as the
control and a quantum bit as the target, as in the following:

Here, after the first qubit is measured, we apply two further controlled-NOT operations that are
controlled by the measurement outcome and then we measure the remaining two qubits. The
picture shows that we indeed successfully reset the two qubits, since measuring them yields
[00] with 100% probability.

If we liked, we could describe these operations in terms of ‘hybrid’ states that consist of one
bit and two qubits, e.g.,

CNOT1→2[a]⊗ |b, c⟩ = [a]⊗ |a⊕ b, c⟩ ,

but we will not need this level of formality.

4.2 Quantum surprises

We will now discuss some interesting phenomena that arise when we deal with quantum bits.
The following sections can be read largely independently, so feel free to start with the one that
interests you most.

81

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22NOT%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C%22Chance1%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22NOT%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22Measure%22%2C%22Measure%22%5D%2C%5B%22Chance2%22%5D%5D%7D

4.2.1 No cloning

When we have a classical bit, it is easy to copy or clone it – simply look at it and copy what you
see:

[0] 7→ [00],
[1] 7→ [11].

Can we also clone quantum bits?
Let us assume for a moment that this is possible. This would mean that there exists a

quantum operation C that, given any qubit in state |ψ⟩ and a fresh qubit in state |0⟩, acts as

C(|ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩ (4.16)

to produce two copies of |ψ⟩ out of a single copy. (Why do we supply the fresh qubit? This is so
that C has the same number of input qubits as output qubits.)

For example, the cloner would operate as follows on the basis states:

C |00⟩ = |00⟩ ,
C |10⟩ = |11⟩ .

(4.17)

Just like we can easily clone a classical bit, it is easy to find a quantum operation that clones
the basis states. For example, the controlled-NOT operation CNOT1→2 from Eq. (3.46) does this
job.

But is there a quantum operation that can clone an arbitrary unknown qubit state, not just a
basis state? In the following homework problem, you will show that this is not possible.

Homework 4.1: No cloning

In this homework problem we want to prove that there exists no quantum operation C that
satisfies Eq. (4.16). We will use a trick called proof by contradiction. This means that we will
show that if such a cloning operation C existed then this would imply something that we
know to be wrong (e.g., “0 = 1”). From this we can then conclude that no such C can exist.

Thus let us start by assuming that there is a quantum operation C that satisfies Eq. (4.16).
Now you can calculate C(|+⟩ ⊗ |0⟩) in two different ways:

1. First use Eq. (4.16) and then write the result in the form of Eq. (3.30).

2. First expand |+⟩ ⊗ |0⟩ in the form of Eq. (3.30), then use that C is linear, and finally
apply Eq. (4.16).

Do you get the same answer in both cases? If not, what can you conclude?

This famous result is known as the no cloning theorem. The same conclusion (and likely
also the argument that you gave in Homework 4.1) applies also to probabilistic bits! Here is an
intuitive explanation for why we can copy neither probabilistic nor quantum information. If
this were possible then, given a probabilistic bit in an unknown state p or a qubit in an unknown
state |ψ⟩, we could first produce as many copies of p and |ψ⟩ as we like. Given these copies, we
could then measure them in various ways and use the obtained data to estimate the probabilities
of p or the amplitudes of |ψ⟩ to arbitrary precision (just like we did in in §2.5.1 to figure out
the inner workings of the yellow mystery box). Thus, we could from a single probabilistic or
quantum bit learn an arbitrary amount of information. This should clearly not be possible!

Indeed, if this were possible then we would live in a very strange world (much stranger
than the one described by quantum mechanics)! For example, imagine a coin whose probability
of heads is p = 0.1011010010 . . . where the binary digits encode the whole content of Wikipedia

82

as well as all YouTube videos and all pictures of cats you can find on the internet. If cloning
probabilistic bits were possible, I could flip this coin once and write down which outcome I
got. This is a probabilistic bit of information that is equal to 0 with probability p. If I send this
probabilistic bit to you and you have the ability to clone it, you could produce as many copies
of it as you want and then measure them all. By looking at the measurement outcomes and
counting how many zeroes you got, you could estimate the probability p. In fact, by producing
sufficiently many copies of the original bit, you could estimate this probability arbitrarily well!
In particular, you would be able to extract out any binary digit of p and hence also all the
information encoded in p, including the cat picture number 65535!

This should clearly be impossible, since otherwise we would not need USB drives, data
centers, or to pay for our mobile phone data connection – we could just store all our information
in a single probabilistic bit and transmit it all by sending this bit to somebody else! This is
certainly too good to be true. . .

4.2.2 One-time pad

Before discussing teleportation of quantum states, it is useful to first understand a simpler
procedure for probabilistic bits, which is called one-time pad. This procedure allows Alice
to encrypt a message and send it to Bob in such a way that only Bob can understand what
the message is. That is, in case anyone else intercepts the message (such as their classmate
Eve), they would have no idea what the actual message is. The fact that this is even possible is
somewhat surprising. Indeed, what advantage does Bob have over Eve so that he can decode
Alice’s message correctly while Eve has absolutely no clue about its contents?

The trick is for Alice and Bob to first meet in a coffee shop. Take two coins, glue them
together with a chewing gum, flip the resulting ‘double coin’, and separate the two coins again.
Alice and Bob each take one of the flipped coins. Now they share a pair of random bits that are
described by the state from (3.5), namely

r =
1
2
([00] + [11]).

You can think of this as a shared secret! Moreover, only Alice and Bob know what this secret is –
to find it out, they can simply look at their respective coins (thus measuring them). They will
both see the same side, and each of the sides occurs with probability 1/2. This is a very good
secret, since Eve cannot predict it better than blindly guessing!

Now, let us see how Alice and Bob can make use of it. Suppoose that Alice has a secret
message m ∈ {0, 1} that she wants to send to Bob. The overall state of all their bits is described
by the state

[m]⊗ r =
1
2
([m00] + [m11]), (4.18)

where the first two bits (m and the first half of r) belong to Alice and the third bit (the second
half of r) belongs to Bob.

To send her message, Alice needs to look at her half of the shared random bit r and

1. if she sees 0 then she sends m over to Bob as it is,

2. if she sees 1 then she sends NOT(m) over to Bob.

Let’s imagine that Eve intercepts this message. What does she see? Irrespective of the value of
m, she will see 0 with probability 1/2 and 1 with probability 1/2. This is because Alice inverts
m with probability 1/2, which effectively randomizes m in such a way that Eve sees it as a
uniformly random bit.

But what about Bob? Doesn’t Alice’s message appear uniformly random to him as well?
Luckily, Bob has the other half of the secret random bit they shared. While originally Alice’s

83

message appears random to him, too, he can decode it by applying exactly the same procedure
as Alice: look at his half of the shared random bit and

1. if he sees 0 then he takes Alice’s message as it is,

2. if he sees 1 then he applies a NOT operation to Alice’s message.

Overall, Alice’s message is either transmitted as it is or inverted twice, meaning that Bob always
understands it correctly. However, from Eve’s perspective it has been inverted with probability
1/2, meaning that what she sees is a uniformly random bit. Hence, this is a perfectly secure
way for Alice and Bob to communicate!

Let us understand more formally what is going on here. When Alice inverts her first bit if
her second bit is equal to 1, this is the same as applying CNOT2→1 on her two bits. Next, Alice
sends the first bit over to Bob. Then, when Bob decodes Alice’s message, what he does is to
apply a CNOT3→1 operation (which he can do since, in addition to the third bit, he now also
holds the first bit). The resulting state is

CNOT3→1 CNOT2→1([m]⊗ r).

We can evaluate this as follows:

CNOT3→1 CNOT2→1
1
2
([m, 0, 0] + [m, 1, 1]) = CNOT3→1

1
2
([m, 0, 0] + [NOT(m), 1, 1])

=
1
2
([m, 0, 0] + [NOT(NOT(m)), 1, 1]) =

1
2
([m, 0, 0] + [m, 1, 1]) = [m]⊗ r.

Thus, the message bit is back in its original state but is now with Bob.
An interesting aspect of the above one-time pad protocol is not only that it lets Alice send

a deterministic message [m] to Bob but even a probabilistic one. It follows by linearity that if
Alice’s message is instead a probabilistic bit with distribution p, then the initial state is p⊗ r and
the final state is again p⊗ r, where this time p is with Bob. However, from Eve’s perspective
the transmitted message is still uniformly random. The surprising part about this is that by
sending a uniformly random bit Alice manages to secretly transmit a probabilistic bit whose
distribution she might not even be aware of.

This procedure is quite similar to quantum teleportation, where Alice can transmit a qubit
state |ψ⟩ to Bob by sending two (instead of one) uniformly random bit. For teleportation, they
have to use a shared maximally entangled state |Φ+⟩ instead of the shared random bit r. In both
cases, the shared resource is measured and thus consumed during the procedure. We discuss
this in the following section.

4.2.3 Quantum teleportation

While it is not possible to clone quantum bits, we can certainly move quantum bits from one
place to another. Indeed, any qubit is stored inside some physical object or particle that carries
the qubit. For example, if Alice stores her qubit as the polarization of a photon, she can simply
send this photon to Bob. What is more surprising, however, is that one can move a quantum bit
from one place to another by sending a finite number of classical bits (in fact, two bits suffice).
The reason this is surprising is because a general qubit state |ψ(θ)⟩ is specified by an arbitrary
angle θ, see Eq. (2.5), which generally cannot be encoded in a finite number of bits. Because of
this surprising property this procedure is known as teleportation. We will see shortly that we
need entanglement to make it work!

The starting point for teleportation is the following scenario. We imagine that Alice has two
qubits and Bob has one qubit. Alice’s first qubit is the message qubit that she wants to send to
Bob, and it starts out in some arbitrary state |ψ⟩ – which may well be unknown to Alice herself!

84

Her second qubit and Bob’s qubit are in a maximally entangled state |Φ+⟩. Thus, the three
qubits are in the following state:

|ψ⟩ ⊗
∣∣Φ+

〉
,

where the first two qubits belong to Alice and the last qubit belongs to Bob (recall from Eq. (3.52)
that |Φ+⟩ is a two-qubit state). The following QUIRKY circuit shows what this looks like in case
that Alice wants to send a qubit in state |ψ⟩ = |1⟩ = NOT |0⟩:

Alice

Bob

What should be the next step? Eventually, the goal is for Bob to obtain Alice’s qubit – since
we cannot clone the qubit, this means that Alice has to perform some action that ‘destroys’ her
qubit. A good way of going about this is to perform a measurement. But simply measuring
Alice’s two qubits will do them no good, since we know that we cannot infer the state of |ψ⟩
from a single measurement. This means that Alice should first apply some quantum operation
on both of her qubits and then measure them. It turns out that the correct strategy for her is to
perform the same operations that you used to discriminate the four Bell states in Exercise 3.13:

Alice

Bob

Note that in this example Alice’s four measurement outcomes occur with 25% each. Here is
another example, corresponding to the situation where Alice tries to teleport the state |ψ(0.42)⟩
instead:

Alice

Bob

It seems that, whatever the state of Alice’s message qubit, the four probabilities are always
the same. This is already encouraging, since it means that the measurement gives Alice no
information at all about her message qubit! Recall that we want her initial state |ψ⟩ to end up
completely with Bob, meaning that she should not extract or keep any information about this
state around.

In general, the state right before Alice’s measurements looks as follows:

(H ⊗ I ⊗ I) (CNOT1→2 ⊗ I)
(
|ψ⟩ ⊗

∣∣Φ+
〉)

85

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%2C%22NOT%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%2C%22NOT%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22Measure%22%2C%22Measure%22%5D%2C%5B1%2C%22Chance2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%2C%22~mk6l%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22Measure%22%2C%22Measure%22%5D%2C%5B1%2C%22Chance2%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~mk6l%22%2C%22name%22%3A%22U(0.42)%22%2C%22matrix%22%3A%22%7B%7B0.9130889%2C-0.4077605%7D%2C%7B0.4077605%2C0.9130889%7D%7D%22%7D%5D%7D

Note that we have to be careful, since the last two tensor products are not aligned (cf. Exercise 4.3).
Thus we compute:

(H ⊗ I ⊗ I) (CNOT1→2 ⊗ I)
(
|ψ⟩ ⊗

∣∣Φ+
〉)

=
1√
2
(H ⊗ I ⊗ I) (CNOT1→2 ⊗ I) (ψ0 |000⟩+ ψ0 |011⟩+ ψ1 |100⟩+ ψ1 |111⟩)

=
1√
2
(H ⊗ I ⊗ I) (ψ0 |000⟩+ ψ0 |011⟩+ ψ1 |110⟩+ ψ1 |101⟩)

=
1
2
(ψ0 |000⟩+ ψ0 |100⟩+ ψ0 |011⟩+ ψ0 |111⟩+ ψ1 |010⟩ − ψ1 |110⟩+ ψ1 |001⟩ − ψ1 |101⟩)

= |00⟩ ⊗ ψ0 |0⟩+ ψ1 |1⟩
2

+ |01⟩ ⊗ ψ1 |0⟩+ ψ0 |1⟩
2

+ |10⟩ ⊗ ψ0 |0⟩ − ψ1 |1⟩
2

+ |11⟩ ⊗ −ψ1 |0⟩+ ψ0 |1⟩
2

.

This is the overall state right before Alice’s measurement. We can compute the probability of her
measurement outcomes as discussed in Eq. (4.14). Namely, to compute the probability pa,b of
outcome [ab] we simply add the squared amplitudes of the relevant basis states |ab0⟩ and |ab1⟩.
In each case, one of the amplitudes is ψ0/2 and the other is ±ψ1/2, so their squares always sum
to the same result:

p00 =

(
ψ0

2

)2

+

(
ψ1

2

)2

=
ψ2

0 + ψ2
1

4
=

1
4

,

p01 =

(
ψ1

2

)2

+

(
ψ0

2

)2

=
1
4

,

p10 =

(
ψ0

2

)2

+

(−ψ1

2

)2

=
1
4

,

p11 =

(−ψ1

2

)2

+

(
ψ0

2

)2

=
1
4

.

Each outcome occurs with 25%. This confirms what we previously observed with QUIRKY.
After Alice’s measurement, the only remaining quantum bit is Bob’s qubit. Let us denote its

state by |ψ′a,b⟩, since it depends on Alice’s measurement outcome. We can determine it using
Eq. (4.15) or, much easier, using the grouping and normalization method in Eq. (4.13). Either
way, the result is that Bob’s qubit is in one of the following four states:∣∣ψ′00

〉
= ψ0 |0⟩+ ψ1 |1⟩ ,∣∣ψ′01
〉
= ψ1 |0⟩+ ψ0 |1⟩ ,∣∣ψ′10
〉
= ψ0 |0⟩ − ψ1 |1⟩ ,∣∣ψ′11
〉
= −ψ1 |0⟩+ ψ0 |1⟩ .

When [ab] = [00], Bob’s state coincides exactly with Alice’s original state |ψ⟩ that she wanted
to teleport: ∣∣ψ′00

〉
= |ψ⟩ .

In the other three cases Bob’s quantum state is slightly garbled. However, if Alice sends her
measurement outcomes (i.e., the two bits a and b) to Bob then he can apply an appropriate
correction operation to ‘fix up’ his state:

NOT
∣∣ψ′01

〉
= |ψ⟩ ,

Z
∣∣ψ′10

〉
= |ψ⟩ ,

Z NOT
∣∣ψ′11

〉
= |ψ⟩ .

These four cases can be summarized in the following simple procedure for Bob:

86

1. look at bit b and if b = 1 then apply NOT,

2. look at bit a and if a = 1 then apply Z.

We can implement this using a controlled-NOT and a controlled-Z operation, where the controls
are classical bits. You can create the controlled-Z operation in the same way as the controlled
NOT operation – we discussed this at the end of §3.2.4. Phew, this was quite a bit of work!

What does all this look like in QUIRKY? The end result is the following quantum circuit:

Alice

Bob

We added a gray box about the relevant part – the teleportation circuit – to separate it from the
rest of the circuit that creates the input states. Here is a picture that shows only the teleportation
circuit and the creation of the maximally entangled state, without specifying Alice’s first qubit:

Alice

Bob

We also cut off the wires for Alice’s two classical bits, since they are no longer of interest once
Alice has sent the two measurement outcomes to Bob. We also removed the probability display,
since it is not an actual quantum operation but just a way for us to inspect the circuit in QUIRKY.
Thus, there is one input qubit for Alice’s message, two qubits for the maximally entangled state,
and one output qubit on Bob’s side. The effect of the teleportation is simply to pass through
an arbitrary state |ψ⟩ from the input qubit on Alice’s side to the output qubit on Bob’s side.
Crucially, inside the box, only classical bits are being sent from Alice to Bob!

Let’s make sure that we didn’t do a mistake. Since we expect that Bob’s qubit ends up in
state |1⟩ after the teleportation procedure, we can add a simple measurement to test if this is
indeed what happened:

Alice

Bob

Indeed, we get outcome 1 with 100% probability, which confirms that we successfully teleported
the |1⟩ state! Now, |1⟩ is not a particularly interesting state to teleport. How about the |+⟩ state,
which caused us trouble before when we discussed cloning? In the following homework you
will test the teleportation circuit first for the |+⟩ state and then for arbitrary single-qubit states.

87

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%2C%22NOT%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22Measure%22%2C%22Measure%22%5D%2C%5B1%2C%22Chance2%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22Z%22%2C1%2C%22%E2%80%A2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22Measure%22%2C%22Measure%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22Z%22%2C1%2C%22%E2%80%A2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%2C%22NOT%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22Measure%22%2C%22Measure%22%5D%2C%5B1%2C%22Chance2%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22Z%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22Measure%22%5D%2C%5B%22Chance1%22%5D%5D%7D

Homework 4.2: Testing teleportation

1. Why does the following circuit confirm that the |+⟩ state was teleported correctly?

2. How you can you similarly test if a quantum state |ψ(θ)⟩ was teleported correctly?

The teleportation circuit is quite remarkable. It allows to send a quantum bit from Alice
to Bob by transmitting two classical bits only, provided that Alice and Bob share a maximally
entangled state. However, it is not only useful for applications (we will discuss some of them
below), but it also gives some interesting perspective on the difference between classical and
quantum bits. Recall that at the end of last week we discussed superdense coding, which
allowed us to send two bits by transmitting a single quantum bit, again using one maximally
entangled state beween Alice and Bob. This shows that:

Given a free supply of quantum entanglement, sending two bits is
completely equivalent to sending one quantum bit!

Note that in neither teleportation nor superdense coding can we reuse the maximally entangled
state once the procedure is finished – it is the ‘fuel’ that is consumed by either procedure.

4.2.4 A glance at quantum networks

By repeatedly using teleportation, we can communicate quantum bits between distant nodes.
For example, suppose Alice, her donkey robot, and Bob are in the following situation:

Alice’s donkey robot ←→ Alice ←→ Bob,

where each “↔” arrow indicates a maximally entangled state. That is, the joint state of our
three protagonists is the following four-qubit state:∣∣Φ+

〉
⊗
∣∣Φ+

〉
,

where the middle two qubits belong to Alice – the first one is entangled with the robot and the
second one with Bob.

Note that the donkey robot is not entangled with Bob directly! Nevertheless, if it had
a quantum message to send to Bob then this could be done by running the teleportation
procedure twice: first, we teleport the message from the donkey robot to Alice (consuming the
first maximally entangled state) and subsequently from Alice to Bob (consuming the remaining
maximally entangled state). This is similar to how, say, your mobile phone connects to a nearby
base station, which in turn ‘repeats’ or ‘relays’ the signal to another mobile phone tower (and
so forth). While quantum mechanically we cannot copy a qubit, due to the no cloning theorem
(c.f. Homework 4.1), we can still teleport it over long distances!

Entanglement is not only useful for teleportation but also for many other things. Is there
also a way to use teleportation to create entanglement between Alice’s donkey robot and Bob
(which they could then use for other purposes)?

Intuitively, it seems that Alice simply needs to teleport her first qubit (the one that is
entangled with the donkey robot) to Bob. In QUIRKY, this would look as follows:

88

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%2C%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22Measure%22%2C%22Measure%22%5D%2C%5B1%2C%22Chance2%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22Z%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22H%22%5D%2C%5B%22Measure%22%5D%2C%5B%22Chance1%22%5D%5D%7D

Donkey

Alice

Bob

Here, we first create the two maximally entangled states and we then apply the same telepor-
tation circuit as above (gray box). Intuitively, we might hope that this results in a maximally
entangled state between the donkey robot and Bob. In the following homework, you can
confirm that this is indeed the case.

Homework 4.3: Teleporting an entangled qubit

Confirm using QUIRKY that at the end of the circuit the donkey’s qubit and Bob’s qubit are
in the maximally entangled state |Φ+⟩.

In the same way, we can use teleportation to create entanglement between more and more
distant nodes. E.g., suppose we are in the following situation:

Alice’s donkey robot ←→ Alice ←→ Bob ←→ Bob’s squirrel robot.

If Alice first teleports her first qubit to Bob and Bob subsequently teleports his first qubit to his
squirrel robot, this results in a maximally entangled state between the two robots. Let’s hope
that the robots only use this entanglement for benevolent purposes!

Establishing entanglement over long distances will be an important functionality once we
try to connect quantum computers in a small network or, dreaming boldly, in a future ‘quantum
internet’. Several of us are already thinking hard how to realize this in practice and how to best
use long-distance entanglement for interesting applications.

4.2.5 The uncertainty principle

For the last phenomenon that we want to discuss, we will only need a single quantum bit.
Recall the rules for measuring a single quantum bit from Eq. (2.6), as in the following picture:

Given a quantum state |ψ⟩ = ψ0 |0⟩+ ψ1 |1⟩, we obtain the two possible outcomes with proba-
bilities

p0 = ψ2
0, p1 = ψ2

1. (4.19)

What are the deterministic states for which we get one of the outcomes with certainty? These
are states for which one probability is 100% and the other is 0%. In other words, states where
one amplitude is ±1 and the other is zero. Up to possibly an overall minus sign, which we
know from Exercise 2.7 is irrelevant, there are only two such states:

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
, (4.20)

i.e., the basis states. These are the only states for which we can predict the measurement outcome
perfectly well, so we will say that there is no uncertainty in the measurement outcome.

What happens if we first perform an operation on the qubit and then perform a measure-
ment? For example, suppose that we first apply a Hadamard operation and then a measurement,
as in the following picture:

89

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22NOT%22%5D%2C%5B1%2C%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22Measure%22%2C%22Measure%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22Z%22%2C1%2C%22%E2%80%A2%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22Measure%22%5D%5D%7D

Here, the only states for which we are completely certain about the measurement outcome are

|+⟩ = 1√
2

(
1
1

)
, |−⟩ = 1√

2

(
1
−1

)
(4.21)

(up to overall sign). This is because the Hadamard operation maps |+⟩, |−⟩ back to the basis
states |0⟩, |1⟩ (you showed this in Exercise 4.5); and the latter states are precisely the states with
complete certainty about the final measurement, as we discussed above. We can also see this by
computing the probabilities of the two measurement outcomes

q0 =
(ψ0 + ψ1)

2

2
, q1 =

(ψ0 − ψ1)
2

2
. (4.22)

If q1 = 0 then the state is |+⟩, while if q0 = 0 then the state is |−⟩ (up to overall sign).
These are all calculations that we have seen several times – but there is an interesting

observation that we have not made before. Since no state appears in both Eqs. (4.20) and (4.21),
this means that, for every state, at least one of the two procedures will have some uncertainty
in the measurement outcome. This result is nothing but the famous Heisenberg uncertainty
principle!

Can we make this observation more quantitative? We first need a way to quantify the
uncertainty or ‘randomness’ given by a probability distribution p =

(p0
p1

)
. The following

function is a good choice:

uncertainty(p) = p0(1− p0) = p0 p1.

It maps values to [0, 1/4], is minimal if one of the outcomes is zero (i.e., if p0 = 0 or p0 = 1) and
it is maximal if both outcomes are equally likely (i.e., if p0 = p1 = 1/2). Here is a plot which
confirms these properties:

p0

uncertainty

0 1
2

1

1
4

Now suppose that we start with a state |ψ⟩ and perform either of the two procedures de-
scribed above. That is, we either measure the state directly or we first apply a Hadamard opera-
tion and then measure. The corresponding uncertainties are uncertainty(p) and uncertainty(q),
where the distributions p =

(p0
p1

)
and q =

(q0
q1

)
are given in Eqs. (4.19) and (4.22) above. Then:

uncertainty(p) + uncertainty(q) > 0.

Indeed, this inequality means precisely that there exists no state for which both uncertainties
are simultaneously zero. In the following homework problem, you will show a stronger result:

90

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%5D%2C%5B1%2C%22Measure%22%5D%5D%7D

Homework 4.4: Uncertainty tradeoff

Show that, for every qubit state |ψ⟩:

uncertainty(p) + uncertainty(q) =
1
4

. (4.23)

Moreover, find a qubit state |ψ⟩ with uncertainty(p) = uncertainty(q).
Bonus question: Construct this state using QUIRKY, and confirm that uncertainty(p) =
uncertainty(q) by using QUIRKY.

The formula that you just proved in Homework 4.4 is quite remarkable: it shows that there is a
simple tradeoff between the uncertainties of the two procedures. In particular, if one procedure
has zero uncertainty then the other produces a uniformly random outcome! 12

12We can also see this directly. E.g., if we directly measure |+⟩ (a state that has zero uncertainty for the second
procedure) without first doing a Hadamard, we get outcomes 0 and 1 with equal probability.

91

4.3 Exercise solutions

Solution to Exercise 4.1∣∣Φ−〉⊗ ∣∣Ψ−〉
=

(
1√
2
|00⟩ − 1√

2
|11⟩

)
⊗
(

1√
2
|01⟩ − 1√

2
|10⟩

)
=

1
2
|0001⟩ − 1

2
|0010⟩ − 1

2
|1101⟩+ 1

2
|1110⟩ .

Solution to Exercise 4.2
Let us first expand the given product state in the form of Eq. (4.2):

∣∣Φ+
〉
⊗ |1⟩ = 1√

2
|001⟩+ 1√

2
|111⟩ .

Thus:

H2
(∣∣Φ+

〉
⊗ |1⟩

)
= H2

(
1√
2
|001⟩+ 1√

2
|111⟩

)
=

1√
2

H2 |001⟩+ 1√
2

H2 |111⟩

=
1√
2
|0⟩ ⊗ H |0⟩ ⊗ |1⟩+ 1√

2
|1⟩ ⊗ H |1⟩ ⊗ |1⟩

=
1√
2
|0⟩ ⊗ |+⟩ ⊗ |1⟩+ 1√

2
|1⟩ ⊗ |−⟩ ⊗ |1⟩

=
1√
2
|0⟩ ⊗

(
1√
2
|0⟩+ 1√

2
|1⟩
)
⊗ |1⟩ + 1√

2
|1⟩ ⊗

(
1√
2
|0⟩ − 1√

2
|1⟩
)
⊗ |1⟩

=
1
2
|001⟩+ 1

2
|011⟩+ 1

2
|101⟩ − 1

2
|111⟩ ,

where we used Eq. (2.20) to compute the action of H on the basis states.

Solution to Exercise 4.3

1. We saw how to prepare |Φ−⟩ in Exercise 3.12. Thus, the following circuit does the job:

2. Here is the resulting state:

(CNOT2→1 ⊗ I)(|0⟩ ⊗
∣∣Φ−〉) = (CNOT2→1 ⊗ I)

(
1√
2
|000⟩ − 1√

2
|011⟩

)
=

1√
2
|000⟩ − 1√

2
|111⟩ .

92

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22NOT%22%5D%2C%5B1%2C%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C%22NOT%22%5D%5D%7D

Solution to Exercise 4.4
Let

|ψ⟩ = ψ000 |000⟩+ ψ001 |001⟩+ ψ010 |010⟩+ ψ011 |011⟩
+ ψ100 |100⟩+ ψ101 |101⟩+ ψ110 |110⟩+ ψ111 |111⟩

be an arbitrary three-qubit quantum state. The result of applying the Toffoli operation is∣∣ψ′〉 = T |ψ⟩ = ψ000 |000⟩+ ψ001 |001⟩+ ψ010 |010⟩+ ψ011 |011⟩
+ ψ100 |100⟩+ ψ101 |101⟩+ ψ110|111⟩+ ψ111|110⟩.

We highlighted the two basis states that changed in bold. Note that the only change is that
the amplitudes of |110⟩ and |111⟩ were swapped. Thus it is clear that if ∑1

a,b,c=0 ψ2
a,b,c = 1

then also ∑1
a,b,c=0(ψ

′
a,b,c)

2 = 1. Thus, T maps quantum states to quantum states.

Solution to Exercise 4.5

1. By applying H to |+⟩ and |−⟩ we get

H |+⟩ = H
1√
2
(|0⟩+ |1⟩) = 1

2
(
(|0⟩+ |1⟩) + (|0⟩ − |1⟩)

)
= |0⟩ ,

H |−⟩ = H
1√
2
(|0⟩ − |1⟩) = 1

2
(
(|0⟩+ |1⟩)− (|0⟩ − |1⟩)

)
= |1⟩ .

2. To show this identity, we only need to check that HZH acts the same way as NOT
on the basis vectors (by linearity, this would mean that they act the same way on all
qubit states):

HZH |0⟩ = HZ
1√
2
(|0⟩+ |1⟩) = H

1√
2
(|0⟩ − |1⟩) = H |−⟩ = |1⟩ ,

HZH |1⟩ = HZ
1√
2
(|0⟩ − |1⟩) = H

1√
2
(|0⟩+ |1⟩) = H |+⟩ = |0⟩ .

In both cases HZH inverts the bit, so it is implementing the same operation as NOT.

3. The first part of the exercise shows that applying the Hadamard gate twice does
nothing: HH = I. Thus,

Z = (HH)Z(HH) = H(HZH)H = H NOT H

where the last step is by part 2 of the exercise.

93

Solution to Exercise 4.6

1. Using Eq. (2.15),

U(θ2)U(θ1) |ψ(α)⟩ = U(θ2) |ψ(α + θ1)⟩ = |ψ(α + θ1 + θ2)⟩ = U(θ1 + θ2) |ψ(α)⟩ .

This holds for any state |ψ(α)⟩, implying that U(θ2)U(θ1) = U(θ) where θ = θ1 + θ2.
This is also clear geometrically: if you first rotate by angle θ1 and then by angle θ2,
together this amounts to a rotation by angle θ = θ1 + θ2.

2. Here is an elegant solution. Recall from Eq. (2.19) that we can express a general
reflection in two different forms: V(θ) = NOT U(θ) = U(−θ)NOT. If use the first
expression for V(θ1) and the second expression for V(θ2), we get

V(θ2)V(θ1) = U(−θ2)NOT NOT U(θ1) = U(−θ2)U(θ1) = U(θ1 − θ2),

where we used the fact that doing two consecutive NOTs amounts to doing nothing
and that two consecutive rotations amount to a single rotation with the two angles
being added, as shown above.

Solution to Exercise 4.7
Following Eq. (4.14), we should obtain [00] and [11], with probability 50% each. Indeed:

94

https://www.quantum-quest.org/quirky/QuirkyQuest4.html#circuit=%7B%22cols%22%3A%5B%5B1%2C1%2C%22H%22%5D%2C%5B1%2C%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22NOT%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22Measure%22%2C%22Measure%22%5D%2C%5B1%2C%22Chance2%22%5D%5D%7D

Quest 5: Algorithm virtuoso

One of the main motivations for studying quantum computing is the fact that quantum
computers can solve some problems much faster than we know using the computers we
currently have. To distinguish quantum computers from ordinary computers, we will use the
general term classical computer to refer to any computational device that we currently have.
This includes your laptop or desktop computer, but also very small computers such as in your
smartphone or smartwatch, as well as very big and powerful supercomputers that may occupy a
complete room. What distinguishes all these computers from quantum computers is not how
big, small, slow, or fast they are, but the fact that their inner workings can be described by
classical physics (more specifically, electromagnetism). In other words, their hardware operates
in ways that can be described by old physical theories that predate quantum mechanics. This is
a bit similar to how the music composed by Mozart and Bach is called classical music. Just like
classical computers, classical music also does not take full advantage of more advanced musical
instruments, such as the electric guitar or synthesizers.

As a consequence of the kind of hardware that classical computers have, all information
they store – be it a picture, a sound file, a video or a web page – are represented by bitstrings,
i.e., long sequences of zeroes and ones. This information is processed by following some rules
that describe how these zeroes and ones should be modified to get a useful answer. We call
this sequence of instructions an algorithm. You can think of an algorithm as a recipe – it is a
sequence of instruction such that if you carefully follow them you will get the desired outcome,
such as a chocolate brownie! For example, an algorithm might take two binary strings as input
and produce another binary string that contains the sum of the two original strings (when
interpreted as numbers) as output. Just like recipes, algorithms were originally executed by
people. In fact, the word ‘computer’ used to refer to a person who is computing. Nowadays,
however, algorithms are run on actual computers. Since computers generally are not very smart,
they need the algorithm to be described to them in an extremely precise way. This description, a
program, is a concrete implementation of the abstract algorithm in such a way that the computer
can understand it. For this, we need to use some programming language which the computer is
able to translate by itself into elementary operations on zeroes and ones, and then execute them
in the actual hardware.

When you design an algorithm, program it in your computer, and run it, you want to get the
answer in some reasonable amount of time. The actual time it takes to get the answer, however,
depends on many factors:

1. how fast your computer is at executing different elementary instructions,

2. whether the input of your program is read from a hard disk, a network connection, or
directly from memory,

3. which programming language you use to specify your program (and the version of the
compiler or interpreter that runs the program),

and so forth. This makes it very hard to compare different algorithms.
To make the comparison of different algorithms easier and more fair, computer scientists do

not look at how long it takes to run the algorithm on a specific computer configured in some
particular way. Instead they count the number of elementary operations the algorithm performs.
This way they can make sure that they are comparing the algorithms themselves and not the
computers the algorithms are running on (indeed, a good algorithm running on a very slow
computer might appear worse than a bad algorithm running on a very fast computer). More
specifically, what computer scientists want to know is how the number of operations grows
with the size of the problem the algorithm must solve. Indeed, the larger amount of data you

95

need to process, the longer it will take no matter how good the algorithm is. So what you want
to know is whether your algorithm will still be able to cope when the data gets extremely large.
The area of computer science that studies this is called computational complexity.

In quantum computing, we are interested in designing quantum algorithms which solve
computational problems by manipulating quantum states instead of bitstrings. The elementary
instructions that we will use are gates, such as the Hadamard gate, the controlled-NOT gate,
or a measurement. We will specify our quantum algorithms pictorially in terms of a quantum
circuit, which you already have a lot of experience crafting in QUIRKY. But we could also use a
textual representation like you would expect from an ordinary computer program. For example,
the left-hand side circuit could be represented by the right-hand program text:

CNOT q1 -> q2;
H q1;

where q1 and q2 refer to the two qubits (recall that the bottom wire corresponds to the first qubit).
Given a computational problem, we can then compare the number of elementary instructions
that the best known quantum and classical algorithms use to solve it. In this way, we can get a
precise understanding of the advantage offered by future quantum computers.

5.1 Talking to oracles

In this quest, we will look at several quantum algorithms and see how they compare to classical
algorithms that solve the same problem. Since it is generally very hard to understand how
many elementary operations are required to solve a certain computational problem, in this
quest we will look at a simpler measure of algorithm complexity (this is also what computer
scientists do when they want to make their life a bit simpler).

When a computer is running a program, it has to perform several different types of opera-
tions. The slowest type of operations are those that need to access data. For example, when
reading it from the memory, hard drive or – in the worst case – another computer accessible
over the internet. Once the relevant piece of data has been read, processing it can be relatively
quick. Because of this, we can get a rough idea for how long a certain algorithm will run if we
only count those instructions that access data.

You might be familiar with this when opening a complicated web page or a large document.
It can take a while for it to load, but once it has loaded, interacting with the web page or scrolling
around the document and inserting another line is usually quite quick.

Another way to think about this, which we will use in this quest, is that the information
you are trying to access is actually produced by another algorithm or a subroutine within
your algorithm. Moreover, this subroutine is very slow. For example, it might be reading the
information from the hard disk or accessing it through the internet. Or it might not even have
the answer readily available and instead have to produce it from scratch by performing some
very complicated calculation. Either way, this subroutine always takes a very long time to come
up with the answer, so you want to call it as few times as possible. We call such subroutine an
oracle since it is very wise and knows all the answers, but also a bit slow and hence needs to
think for a while to deliver the answer.

More formally, a classical oracle is just a function f : {0, 1}n → {0, 1} where {0, 1}n denotes
the set of all n-bit binary strings. You can think of the input x ∈ {0, 1}n to this function as a
question and the output, the bit f (x), as the answer. Every time you evaluate the function f
on some input, you are asking a question that corresponds to that input, and you get a yes/no
answer that corresponds to the value of the function.

For example, you can model the access to a hard drive or memory using an oracle. Say, if
you have 4 bits of memory, you can model them as a function f : {0, 1}2 → {0, 1} that, given a

96

https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22H%22%5D%5D%7D

binary address, returns the corresponding bit. For example, if you want to find out all four bits,
you would need to evaluate f four times to get the four values f (00), f (01), f (10), f (11).

What is important to note is that in our setup the kinds of computational problems we
are interested to solve are not about finding the value of f on a specific input. Indeed, such
problems are trivial since they can be solved by consulting the oracle just once, because this
is precisely what the oracle does – it tells you the value of the function on any input of your
choice. Hence, the kinds of problems we are interested are more subtle. What we want is to
determine some property of the function f by evaluating it as few times as possible.

For example, let’s say we wanted to know whether f (x) = 0 for all x ∈ {0, 1}n. In this case,
what we could do is to ask the oracle about random values of x until we find one such that
f (x) = 1. We will soon see other examples of such problems.

5.1.1 Reversible computation

Before we get carried away with trying to find exciting new quantum algorithms, let us first
make sure that we can still compute on a quantum computer everything that we can compute
on an ordinary computer. In other words, let us first make sure that quantum computers are
actually not less powerful than ordinary (classical) computers! This is not entirely obvious,
since the way that quantum computers work is very different. In particular, all operations
on a quantum computer are reversible or invertible, as we already mentioned in §2.4.2 and
§4.1.3, but this is normally not the case on an ordinary computer. Who has never erased a file
by accident or forgotten to save the changes in their document and lost all their work? If all
operations would be reversible, you would never have to worry about such trivial matters.

This raises the following question: how can we see that quantum computers can compute
everything that ordinary computers can compute? One way to address this is to show that
reversibility does not in fact restrict what an ordinary computer can compute, and hence it is also
not a restriction for quantum computers. In other words, we will show that any computation
can be made reversible and hence run on a quantum computer.

To get an idea of how this can be done, let us consider the simple example of computing the
logical AND function of two bits. If both bits are 1, AND evaluates to 1, otherwise it evaluates
to 0. Thus, we can represent the AND function by the following function table:

x1 x2 AND(x1, x2)
0 0 0
0 1 0
1 0 0
1 1 1

(5.1)

Using the notation from §3.1, we can write this down mathematically as the following operation
on two bits:

[x1, x2] 7→ [AND(x1, x2)].

Clearly this operation is not reversible because it does not have the same number of output bits
as input bits. Indeed, if you only know that the AND of two bits is 0 then you cannot infer the
precise state of the two bits – as the function table shows, there are three possible options.

How can we fix this problem? Let’s try to keep the first bit around and introduce a second
output bit in which we store the answer:

[x1, x2] 7→ [x1, AND(x1, x2)].

This is better, since now we are mapping two bits to two bits. But is it reversible? That is, given
the output, can we always reconstruct the input? Well, we can surely reconstruct the first bit of

97

the input, x1, since we also have it in the output. How about x2 then? If x1 = 0 then according
to Eq. (5.1) the output is [00] – irrespective of the value of x2. This means that, again, we cannot
always reconstruct the input and hence this approach also sadly does not work.

This starts to look hopeless. Is it even possible at all to implement the AND function in a
reversible fashion? When you get stuck, you have to think outside the box! In this case, who
said that we should limit ourselves to two bits only? If we keep both input bits around and
introduce a third bit to store the answer, this should surely make the operation reversible:

[x1, x2, 0] 7→ [x1, x2, AND(x1, x2)]. (5.2)

Now there is no problem to invert the operation – given any output bitstring, we can simply
forget what the last bit contains and replace it by [0] to recover the input bitstring. For example,
if the output is [111] then the input must have been [110].

So are we done? Not so fast! Note that Eq. (5.2) only specifies the operation partially – if
the input is [111], or any other bitstring that ends with 1, then Eq. (5.2) does not say how the
operation should act on this input. Since the four input strings that end with 0 are mapped to
four distinct output strings, it is clear that we can extend Eq. (5.2) in some arbitrary fashion to a
reversible operation of three bits. But is there some systematic way of going about this?

For this, note that Eq. (5.2) flips the last bit from [0] to [1] if AND(x1, x2) = 1. Similarly, if
the last bit instead happens to be [1], we could simply define our operation to flip it back to [0]
whenever AND(x1, x2) = 1. In other words, we can extend Eq. (5.2) to all possible input strings
as follows:

[x1, x2, y] 7→ [x1, x2, y⊕AND(x1, x2)], (5.3)

for all x1, x2, y ∈ {0, 1}, where ‘⊕’ denotes addition modulo 2.
The operation in Eq. (5.3) is now defined on all possible inputs. But is it finally reversible?

Yes, it is! In fact, this operation is its own inverse! That is, if we do the operation twice, we get
the original input back:

[x1, x2, y] 7→ [x1, x2, y⊕AND(x1, x2)]

7→ [x1, x2, y⊕AND(x1, x2)⊕AND(x1, x2)] = [x1, x2, y].

In the third step we used that a ⊕ a = 0 for any a ∈ {0, 1}, see Eq. (3.20). Thus we have
successfully found a way to compute the AND function in a reversible way.

5.1.2 Bit oracles

This idea works not only for the logical AND function but in fact for any function

f : {0, 1}n → {0, 1}

that takes n bits as an input and returns a single bit. For any such function f we can define a
reversible operation on (n + 1) bits:

[x1, . . . , xn, y] 7→ [x1, . . . , xn, y⊕ f (x1, . . . , xn)] (5.4)

for all x1, . . . , xn, y ∈ {0, 1}. Just like Eq. (5.3), this operation is its own inverse, i.e., applying it
twice is equivalent to doing nothing.

It is reassuring that we can implement any function f : {0, 1}n → {0, 1} reversibly as in
Eq. (5.4). First of all, it means that any computation on a classical computer can be done in such
a way that we can recover the original input. Second, once the computation is made reversible,
we can run it also on a quantum computer. This implies that quantum computers can compute
everything that classical computers can! Third, this means that we can implement any function
f as an oracle on a quantum computer.

98

Let’s see how this actually works. The quantum version of the operation in Eq. (5.4) is
defined as follows:

U f |x1, . . . , xn, y⟩ = |x1, . . . , xn, y⊕ f (x1, . . . , xn)⟩ (5.5)

for all x1, . . . , xn, y ∈ {0, 1}. Eq. (5.5) defines how U f acts on all basis states of n + 1 qubits.
As usual, we extend this definition to an arbitrary state on n + 1 qubits by linearity. Since U f
simply permutes the basis states, you can check as in Exercise 4.4 that it defines a valid quantum
operation.

We call the quantum operation U f defined in Eq. (5.5) the bit oracle for f (we could also
call the function in Eq. (5.4) a classical bit oracle, but we will not need this name). The term
‘oracle’ simply means that applying this operation is like asking an all-powerful oracle to tell us
the value of the function on any given input. We do not know how the oracle is implemented
precisely nor where it gets its answer from, we will just count how many questions we need to
ask the oracle to learn some property of the function f . Many interesting algorithmic problems
can be modeled in this fashion, as we will see in the remainder of this quest.

The concept of an oracle is a bit like playing the ‘guess my number’ game. Your friend
(the oracle) comes up with some number and you ask them questions of the form “is your
number x”? Your friend answers each of these questions with either “yes” or “no”. In other
words, your friend is hiding a function that evaluates to “no” on all inputs, except on one (the
number they have in mind). With every question you ask, you gain more information about
which number it could possibly be. You may wonder how many questions you need to ask to
determine the number. Moreover, what if you could ask your questions to a quantum oracle
such as U f instead of your friend? Could you figure out the answer with less questions? In this
week’s quest, we will see several interesting examples where this indeed is the case!

Let us discuss some examples of bit oracles. Assume f is the AND function. According
to Eq. (5.1), we can interpret AND as multiplication modulo 2 since AND(x1, x2) = x1x2. The
corresponding bit oracle

UAND |a, b, c⟩ = |a, b, c⊕ ab⟩

is nothing but the Toffoli gate from Exercise 4.4. Even for n = 1 and the function f (x) = x that
simply returns its input, we get an interesting result: for all a, b ∈ {0, 1},

U f |a, b⟩ = |a, b⊕ a⟩ .

This is just the familiar controlled-NOT gate CNOT1→2 from Eq. (3.47) in §3.2.4! Thus, the bit
oracle construction reproduces several interesting quantum operations that we had previously
defined by hand. In the following exercise you can try to implement all other bit oracles for
functions of a single bit.

Exercise 5.1: Bit oracle for a one-bit function
Let f : {0, 1} → {0, 1} be a function with a single input and output bit. Such a function is
fully specified by the values f (0), f (1) ∈ {0, 1}. These are two bits, so there are precisely
four such functions. We just discussed how to implement the bit oracle U f for the function
f (x) = x. Can you implement the bit oracle U f for the other three functions in QUIRKY?

5.1.3 Sign oracles

Since the bit oracle U f is a quantum operation, we can not only apply it to basis states
|x1, . . . , xn, y⟩ but also to general quantum states. Why would we like to do such a thing?
Well, if we only ever ask the oracle ‘classical’ questions then there is little hope of achieving
a quantum speedup! Given this motivation, let us investigate how the bit oracle U f for an

99

arbitrary function f : {0, 1}n → {0, 1} acts when the last register is set to |−⟩ = (|0⟩ − |1⟩)/
√

2.
First, notice the following interesting fact:

NOT |−⟩ = 1√
2
(NOT |0⟩ −NOT |1⟩) = 1√

2
(|1⟩ − |0⟩) = − |−⟩ .

That is, if we invert a qubit in state |−⟩ then we pick up a sign. We can similarly compute how
the bit oracle acts on a state of the form |x1, . . . , xn⟩ ⊗ |−⟩. By linearity, Eq. (5.5) gives us

U f (|x1, . . . , xn⟩ ⊗ |−⟩)

= U f
(1√

2
|x1, . . . , xn, 0⟩ − 1√

2
|x1, . . . , xn, 1⟩

)
=

1√
2
|x1, . . . , xn, f (x1, . . . , xn)⟩ −

1√
2
|x1, . . . , xn, f (x1, . . . , xn)⊕ 1⟩

= |x1, . . . , xn⟩ ⊗
1√
2

(
| f (x1, . . . , xn)⟩ − | f (x1, . . . , xn)⊕ 1⟩

)
= (−1) f (x1,...,xn) |x1, . . . , xn⟩ ⊗ |−⟩ .

In other words, we end up returning the last qubit back in the state |−⟩, but we pick up an
overall minus sign when f (x1, . . . , xn) = 1. Effectively, we have implemented the following
quantum operation on the first n qubits:

O f |x1, . . . , xn⟩ = (−1) f (x1,...,xn) |x1, . . . , xn⟩ , (5.6)

for all bitstrings x1, . . . , xn ∈ {0, 1}. We call O f the sign oracle for f .
Interestingly, for a function f : {0, 1}n → {0, 1}, the sign oracle O f operates on n qubits since

it stores the output in the amplitude. This is different from the bit oracle U f , which stores the
output in an additional qubit and therefore operates on n + 1 qubits.

At first glance, the sign oracle does not seem to do much since it only introduces an overall
sign when acting on a basis state, which we know from Exercise 2.7 cannot be observed.
However, when we apply it to a superposition then the sign oracle can introduce relative signs,
so we can get an interesting result. For example, for n = 2 qubits, if we apply a sign oracle O f
to a general two-qubit state

|ψ⟩ = ψ00 |00⟩+ ψ01 |01⟩+ ψ10 |10⟩+ ψ11 |11⟩

then we obtain

O f |ψ⟩ = (−1) f (0,0)ψ00 |00⟩+ (−1) f (0,1)ψ01 |01⟩+ (−1) f (1,0)ψ10 |10⟩+ (−1) f (1,1)ψ11 |11⟩

As it turns out, the sign oracle O f is indeed useful and often much easier to apply in quantum
algorithms than the bit oracle U f , so from now on we will not use the bit oracle anymore.

Exercise 5.2: Sign oracle for a one-bit function

Recall from Exercise 5.1 that there are four functions f : {0, 1} → {0, 1} with a single input
and output bit. Can you implement the sign oracle O f for each of them in QUIRKY?

100

Homework 5.1: Determine the function from its sign oracle

Consider the following two-qubit circuit (as usual, the bottom wire is the first qubit):

What function f : {0, 1}2 → {0, 1} is it the sign oracle for?

Hint: Use that H NOT H = Z, which follows from Exercise 4.5.

Let us briefly summarize what we have achieved so far: Using bit oracles, we can ask a
quantum computer to evaluate a function f : {0, 1}n → {0, 1} in exactly the same way as we
would ask an ordinary computer that operates reversibly (compare Eqs. (5.4) and (5.5)). This is
important, because it means that we are not comparing apples and oranges when we ask how
many questions to the bit oracle U f are required to learn something about f versus how many
times one would have to evaluate f on an ordinary computer to learn the same thing. And
since we just showed that the sign oracle O f can always be implemented using the bit oracle
U f , it makes no difference if we ask questions to the sign oracle O f instead.

5.2 Quantum algorithms

In this section we will see several quantum algorithms that can solve a computational problem
much faster than any classical algorithm. Such speedups are very surprising because quantum
mechanics at first glance does not appear to have anything to do with computation. Nev-
ertheless, quantum-mechanical phenomena such as interference can enable very impressive
computational speedups. As already explained earlier, we are working in a computational
setting where we count only the number of questions. That is, assuming the ability to evaluate
some function f on any input, on how many inputs do you need to evaluate it to determine
some property of f . Equivalently, having access to an oracle that can evaluate f , how many
times do you need to use this oracle to determine some property of f .

5.2.1 Deutsch’s algorithm

It is late on Sunday evening. Alice and Bob have just finished their homework assignments for
the quantum computing class and are about to watch a 3D movie. When they turn on their
holographic television set, they discover that the movie screening has been postponed due
to unexpected dramatic news coverage coming from the International Transgalactic Station.
There has been a terrible accident and a module containing two crew members, Hila and Iman,
has separated from the main mothership. The last message received from the module was
that Iman has been injured and is heavily bleeding – he is in need of an urgent blood transfer.
What makes the situation complicated is that Hila and Iman are somewhat in shock and forgot
their own blood type – they can only remember that they each had blood type A or B. The
news presenter is appealing to the general public for help with suggesting a way for Hila and
Iman to determine if they have the same blood type, because if that was the case Hila could
transfer her blood to Iman to save his life. This is because the medical kit in Hila and Iman’s
module includes a lympho-transcoder that is able to convert either of the two blood types to
the opposite one. Hence, even if it turns out that their blood types are mismatching, Hila can
convert her’s to the opposite one using the lympho-transcoder.

Upon hearing these news, Alice and Bob immediately abandon their plan to watch a movie
and start to ponder what could be done to help Hila and Iman. The news coverage continues
with some additional information. Luckily, it turns out that the module involved in the accident

101

https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5B%22H%22%5D%2C%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22H%22%5D%5D%7D

contains a database chip that stores Hila and Iman’s blood type. We can model this by a function
f : {0, 1} → {0, 1}, where

f (0) =

{
0 if Hila’s blood type is A,
1 if Hila’s blood type is B.

and

f (1) =

{
0 if Iman’s blood type is A,
1 if Iman’s blood type is B.

What needs to be determined is whether f (0) = f (1) or not!
The solution seems at hand: Hila and Iman simply need to query the database twice to read

out their respective blood types, f (0) and f (1), and then compare the two values to see if they
are the same. Unfortunately, the accident has partly fried the control logic of the database chip
and the news presenter reports that after the first query the database chip will likely burn out
completely.

Our two protagonists are at an impasse. Clearly, any classical algorithm needs to evaluate f
twice in order to determine whether f (0) = f (1). Indeed, if you know only the value of f (0)
then whether f (0) = f (1) still depends on the value of f (1) and, unless you also compute
f (1), you would not be able to tell whether f (0) = f (1). Similarly, if you know only f (1) then
you cannot compare it with f (0) unless you also know what the value of f (0) is. No matter
what strategy you use, you need to know both f (0) and f (1) in order to determine whether
f (0) = f (1). Is there really no way around this?

After flipping through some manuals, Bob discovers that the database chip can be switched
into quantum mode. When enabled, the database chip no longer evaluates the function classically
but instead implements the sign oracle O f . Could this somehow be used to solve the problem?
Alice thinks about it for a second and suddenly realizes that this is precisely what Deutsch’s
algorithm is for! Alice and Bob quickly go over some calculations to confirm that it works and
sit down to write an intergalactic e-mail with instructions to Hila and Iman on how they can
solve the problem. Their instructions are as follows:

1. Prepare a qubit in state |+⟩ = (|0⟩+ |1⟩)/
√

2.

2. Use the database chip in quantum mode to apply the operation O f .

3. Apply the Hadamard gate H to the output qubit and measure it.

4. If the outcome is 0 then Hila and Iman have the same blood type and otherwise they have
different blood types.

Note that in this procedure Hila and Iman only query the database chip once to determine if
they have the same blood type. Here is an implementation of the algorithm in QUIRKY:

The picture shows that the outcome is 1, so Hila and Iman have different blood types.
But why does Deutsch’s algorithm work? Let us analyze it step by step. The first Hadamard

gate creates the state |+⟩ = H |0⟩. Next, we apply the sign oracle O f , which leads to the state

O f |+⟩ =
1√
2

O f |0⟩+
1√
2

O f |1⟩

=
1√
2
(−1) f (0) |0⟩+ 1√

2
(−1) f (1) |1⟩ .

102

https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22H%22%5D%2C%5B1%2C%22Chip%22%5D%2C%5B1%2C%22H%22%5D%2C%5B1%2C%22Measure%22%5D%2C%5B1%2C%22Chance1%22%5D%5D%7D

After applying the second Hadamard, we obtain the following state:

HO f |+⟩ =
1√
2
(−1) f (0)H |0⟩+ 1√

2
(−1) f (1)H |1⟩

=
1√
2
(−1) f (0) |+⟩+ 1√

2
(−1) f (1) |−⟩

=
1
2
(−1) f (0) (|0⟩+ |1⟩) + 1

2
(−1) f (1) (|0⟩ − |1⟩)

=
(−1) f (0) + (−1) f (1)

2
|0⟩+ (−1) f (0) − (−1) f (1)

2
|1⟩ . (5.7)

Note that the two signs (−1) f (0) and (−1) f (1) are added in the first amplitude, but subtracted
in the second amplitude. Depending on the values of f (0) and f (1), for each amplitude we will
observe either constructive or destructive interference (see §2.6.1). In fact, which of the two
amplitudes will remain is determined only by whether f (0) and f (1) are equal or not:

f (0) = f (1) : HO f |+⟩ = ± |0⟩ ,

f (0) ̸= f (1) : HO f |+⟩ = ± |1⟩ .
(5.8)

It is a good exercise to verify this explicitly:

Exercise 5.3: Verifying Deutsch’s algorithm

Recall from Exercise 5.1 that there are four functions f : {0, 1} → {0, 1}. For each function,
compute the state HO f |+⟩ using Eq. (5.7).

Eq. (5.8) shows that the final measurement yields outcome 0 if and only if f (0) = f (1). Thus,
Deutsch’s algorithm correctly determines whether f (0) = f (1). Importantly, it evaluates the
function f : {0, 1} → {0, 1} only once by using the sign oracle. In contrast, we discussed above
that any classical algorithm necessarily needs to evaluate both function values f (0) and f (1)
separately.

Another way to interpret Deutsch’s algorithm is that it computes the sum of the two bits
f (0) and f (1) modulo two. This is because f (0)⊕ f (1) = 0 if and only if f (0) = f (1). Indeed,
recall from Eq. (3.20) that addition modulo two works as follows:

x1 x2 x1 ⊕ x2

0 0 0
0 1 1
1 0 1
1 1 0

(5.9)

This is also why the sum modulo two is known as the XOR (short for ‘exclusive OR’) of the two
bits, since it is one if exactly one of the two bits is set.

5.2.2 Hadamard transform and interference

While Deutsch’s algorithm is very surprising, it achieves only a very small improvement over
the best classical algorithm, namely 1 evaluation of f instead of 2. This could be useful if
evaluating f takes a very long time, say a year. But if it takes only a millisecond, then most
people would not mind to wait for two milliseconds to get the answer (and pay much less for it
because they would not need to use a quantum computer)! To demonstrate the usefulness of
quantum computers, we would like to speed up computations by more than just a factor of 2.

There is no hope of getting a larger speedup if we only look at functions of a single bit,
since those can be fully determined by two evaluations: f (0) and f (1). We will therefore look

103

more generally at functions f : {0, 1}n → {0, 1} with n input bits, since there are many more
such functions (indeed, there are 22n

of them). Recall that our goal is not to evaluate a function
(indeed, we can do that with a single query to the oracle) but rather to learn some interesting
property of the function that relates the values it takes on different inputs. Are there properties
of n-bit functions that we can learn very efficiently by using clever quantum algorithms?

To generalize Deutsch’s algorithm, observe that its key ingredient was to introduce a
Hadamard gate H before and after the sign oracle. We can do something very similar if we
have an n-bit function. In this case, the sign oracle O f is a quantum operation of n qubits, so we
could simply apply Hadamard gates on all qubits before and after the oracle. The quantum
operation that applies Hadamards on each of the n qubits in parallel is called the Hadamard
transform. Recall from §3.2.3 that we can write it as follows:

H ⊗ · · · ⊗ H.

Let us first see what happens if we apply the Hadamard transform to a basis state. For
|0 . . . 0⟩, the result is simply the uniform superposition over all basis states:

(H ⊗ · · · ⊗ H) |0 . . . 0⟩ = H |0⟩ ⊗ · · · ⊗ H |0⟩

=
1√
2
(|0⟩+ |1⟩)⊗ · · · ⊗ 1√

2
(|0⟩+ |1⟩)

=
1√
2n

(|0 . . . 00⟩+ |0 . . . 01⟩+ . . . + |1 . . . 11⟩) .

This state is a superposition of 2n basis states. There is a more compact way of writing this:

(H ⊗ · · · ⊗ H) |0 . . . 0⟩ = 1√
2n ∑

y1,...,yn∈{0,1}
|y1, . . . , yn⟩ (5.10)

The notation ∑y1,...,yn∈{0,1} means that you compute the sum of |y1, . . . , yn⟩ for all possible
choices of the bits y1, . . . , yn.

More generally, the output on an arbitrary basis state is always a superposition of all 2n basis
states with all amplitudes equal except for signs. Figuring out what exactly those signs are is a
bit tricky. As a warm-up, try it first for the n = 1 and n = 2 cases.

Exercise 5.4: Two Hadamards

Recall from Eq. (2.20) that H |x1⟩ = (|0⟩+ (−1)x1 |1⟩)/
√

2, for any x1 ∈ {0, 1}.
1. Write the state H |x1⟩, for arbitrary x1 ∈ {0, 1}, as follows:

H |x1⟩ =
1√
2

∑
y1∈{0,1}

(−1) ??? |y1⟩ ,

where ??? is some expression involving x1, y1 ∈ {0, 1}. Determine this expression.

2. Write the state (H ⊗ H) |x1, x2⟩, for arbitrary x1, x2 ∈ {0, 1}, in the form

(H ⊗ H) |x1, x2⟩ =
1
2 ∑

y1,y2∈{0,1}
(−1) ??? |y1, y2⟩ ,

where ??? stands for some expression involving x1, x2, y1, y2 ∈ {0, 1}.
Can you determine what this expression is?

Did you figure out the solution? Good, then you are allowed to read on!

104

In general, you can derive the following formula that describes the sign pattern of the
amplitudes you get when applying the Hadamard transform to any n-qubit basis state: For any
x1, . . . , xn ∈ {0, 1},

(H ⊗ · · · ⊗ H) |x1, . . . , xn⟩ =
1√
2n ∑

y1,...,yn∈{0,1}
(−1)x1y1+...+xnyn |y1, . . . , yn⟩ . (5.11)

We can now generalize the Deutsch algorithm in a straightforward way. Starting with the
n-qubit basis state |0 . . . 0⟩, we first apply the Hadamard transform, next the sign oracle O f
for the function f : {0, 1}n → {0, 1} of interest, and finally another Hadamard transform. For
example, for n = 3, this corresponds to the following QUIRKY circuit:

For general n, the mathematical formula for the final n-qubit state is:

(H ⊗ · · · ⊗ H)O f (H ⊗ · · · ⊗ H) |0 . . . 0⟩ . (5.12)

Can we write down this state more explicitly? As before, we can compute this step by step.
First, we apply the Hadamard transform to the all-zeros basis state. By Eq. (5.10), we obtain the
uniform superposition over all basis states:

(H ⊗ · · · ⊗ H) |0 . . . 0⟩ = 1√
2n ∑

x1,...,xn∈{0,1}
|x1, . . . , xn⟩ .

Next we apply the sign oracle O f :

O f (H ⊗ · · · ⊗ H) |0 . . . 0⟩ = 1√
2n ∑

x1,...,xn∈{0,1}
(−1) f (x1,...,xn) |x1, . . . , xn⟩ .

What does the final Hadamard transform achieve? By linearity, we can apply Eq. (5.11) to each
basis vector, so we obtain the following expression for the state in Eq. (5.12):

(H ⊗ · · · ⊗ H)O f (H ⊗ · · · ⊗ H) |0 . . . 0⟩

=
1√
2n ∑

x1,...,xn∈{0,1}
(−1) f (x1,...,xn) 1√

2n ∑
y1,...,yn∈{0,1}

(−1)x1y1+...+xnyn |y1, . . . , yn⟩

= ∑
y1,...,yn∈{0,1}

1
2n

(
∑

x1,...,xn∈{0,1}
(−1)x1y1+...+xnyn(−1) f (x1,...,xn)

)
|y1, . . . , yn⟩ , (5.13)

where we exchanged the two sums to obtain the last equality. For n = 1 this is exactly the same
as Eq. (5.7). In general, however, this expression looks quite unwieldy and hard to interpret –
it seems like the circuit computes some superposition of basis states, where the amplitude is
some strange sum of plus and minus signs!

Let us try to get some intuition by looking at the amplitude of |0 . . . 0⟩ in Eq. (5.13). The
square of this number is the probability that, when we measure the n qubits, all outcomes are
zero. Since this amplitude corresponds to y1 = . . . = yn = 0, it is given simply by

1
2n ∑

x1,...,xn∈{0,1}
(−1) f (x1,...,xn).

105

https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5B%22H%22%2C%22H%22%2C%22H%22%5D%2C%5B%22OracleDJ%22%5D%2C%5B%22H%22%2C%22H%22%2C%22H%22%5D%5D%7D

What does this mean? Suppose that there are N f input bitstrings for which f evaluates to zero
and 2n − N f bitstrings for which f evaluates to one. Then,

1
2n ∑

x1,...,xn∈{0,1}
(−1) f (x1,...,xn) =

N f − (2n − N f)

2n =
2N f − 2n

2n .

There are two interesting extreme cases:13

• If f is a constant function then either N f = 0 (for the all-zeros function) or N f = 2n (for the
all-ones function). Either way, the amplitude is ±2n/2n = ±1. Since the squares of all
amplitudes should sum to 1, we conclude that all other amplitudes in Eq. (5.13) must be 0.
In other words, whenever f is constant, the state in Eq. (5.13) is simply ± |0 . . . 0⟩. If we
measure all n qubits of this state then all outcomes will be zero.

• If f is a balanced function, which means that there are as many zeros as ones, then N f = 2n/2
and so the amplitude is 0. This means that if we measure the state in Eq. (5.13) then we
can never get all outcomes equal to zero. Hence, for a balanced function at least one of the
measurement outcomes will always be one.

Note how these two cases correspond to very different patterns of interference (see §2.6.1). In
the first case, the amplitude of |0 . . . 0⟩ gets amplified to ±1 due to a highly focused constructive
interference, while at the same time all other amplitudes simultaneously vanish due to a mas-
sively widespread destructive interference. In the second case, |0 . . . 0⟩ experiences destructive
interference, causing non-zero amplitudes to pop up elsewhere. Hadamard transform illustrates
the central importance of interference in quantum computing. In the next two sections, we will
make crucial use of it to design quantum algorithms on a large number of qubits.

5.2.3 Deutsch-Jozsa algorithm

Are the above observations useful for anything? Yes, they are! Suppose f : {0, 1}n → {0, 1} is
an unknown function which is either constant or balanced. Then there is a simple quantum
algorithm which can determine which of these two is the case, by using only a single evaluation
of f (i.e., one application of O f).

This algorithm is called the Deutsch-Jozsa algorithm, and it works in five simple steps:

1. Start with |0 . . . 0⟩.

2. Apply the Hadamard transform H ⊗ · · · ⊗ H.

3. Apply the sign oracle O f corresponding to the function f .

4. Apply the Hadamard transform H ⊗ · · · ⊗ H again.

5. Measure all qubits. If all outcomes are zero, the function f must be constant. Otherwise it
must be balanced.

To see how this compares with classical algorithms, notice that any classical algorithm needs
to evaluate the function f at least 2n

2 + 1 times in the worst case. Indeed, suppose that we learn
the function on half of the input bitstrings (i.e., on 2n/2 inputs) and we get the same answer
every time. Then we still cannot conclude that the function is constant, since it could be the case
that the function gives the opposite answer on the remaining half of the input bitstrings while
still being balanced. Hence this is the worst case scenario. In this scenario, we have wasted

13For n = 1, every function is either constant or balanced. For n > 1 this is not true (e.g., the AND function is
neither constant nor balanced).

106

2n/2 questions and still have not learned anything useful. To be certain whether f is constant or
balanced, we need to evaluate it on one more input. In total, this amounts to 2n

2 + 1 evaluations
of f , compared to 1 evaluation in the quantum case. Note that even for moderate values such as
n = 100 this difference is so dramatic that you would not be able to evaluate f so many times in
any reasonable amount of time (indeed, by that time the sun would run out of fuel and you
would have to relocate to another solar system).

To summarize: If f : {0, 1}n → {0, 1} is a function that is either constant or balanced then
the Deutsch-Jozsa algorithm can determine using only one evaluation of f which of the two is
the case. This is exponentially better than any classical algorithm, which needs to evaluate the
function on 2n

2 + 1 many inputs in the worst case.

Homework 5.2: Run Deutsch-Jozsa

The yellow Oracle box in QUIRKY implements the sign oracle for a function that is either
constant or balanced. Implement the Deutsch-Jozsa algorithm in QUIRKY and use it to
determine which of the two is the case.

5.2.4 Bernstein-Vazirani algorithm

Above, we discussed how to use the Hadamard transform to solve an interesting problem.
Given a function f : {0, 1}n → {0, 1} and the promise that f is either constant or balanced, the
Deutsch-Jozsa algorithm was able to determine which of these two options was the case.

In this section we will discuss another interesting problem that one can solve by a slight
variant of the same procedure. As before, we will start with a promise about the unknown
function f that we are dealing with. This time, instead of assuming that it is constant or
balanced, we will assume that it is of the following special form:

f (x1, . . . , xn) = x1a1 ⊕ . . .⊕ xnan, (5.14)

where a1, . . . , an ∈ {0, 1} is some fixed bitstring that defines the function.
If n = 1 then there are only two such functions:

• f (x1) = 0, corresponding to a1 = 0, and

• f (x1) = x1, corresponding to a1 = 1.

If n = 2 then there are already four such functions:

• f (x1, x2) = 0, corresponding to [a1, a2] = [0, 0],

• f (x1, x2) = x2, corresponding to [a1, a2] = [0, 1],

• f (x1, x2) = x1, corresponding to [a1, a2] = [1, 0], and

• f (x1, x2) = x1 ⊕ x2, corresponding to [a1, a2] = [1, 1].

Note that each of these functions computes the sum modulo two of some subset of the variables xi.
Which subset? Whenever ai = 1, the corresponding variable xi is included in the subset.

In general, there are 2n choices of the bitstring a1, . . . , an and hence 2n functions f of the
special form (5.14). In fact, we may think of Eq. (5.14) as a way of hiding the bitstring

[a1, . . . , an]

107

in the function f . How many evaluations of the function do we need to uncover it? Since

a1 = f (1, 0, . . . , 0, 0),
a2 = f (0, 1, . . . , 0, 0),

...
an = f (0, 0, . . . , 0, 1),

we conclude that n evaluations of the function f are certainly enough. For any classical
algorithm, this is also optimal: each time you evaluate the function you only learn a single bit.
Since the unknown bits a1, . . . , an are completely arbitrary and there are n of them, you need to
evaluate the function at least n times to learn them all.

We will now see that we can do much better using a quantum algorithm. To start, let us
compute how the sign oracle for the function in Eq. (5.14) acts on the basis states:

O f |x1, . . . , xn⟩ = (−1)x1a1⊕...⊕xnan |x1, . . . , xn⟩
= (−1)x1a1+...+xnan |x1, . . . , xn⟩ . (5.15)

In the second step we used that (−1)a only depends on a modulo two (i.e., on whether a is
even or odd), so it does not matter whether we use addition modulo 2 (‘⊕’) or the ordinary
addition. How can this sign oracle be implemented? We do not really care, since our algorithm
will treat the oracle as a black box. But since it is a nice exercise, you can try to figure this out in
the following problem.

Exercise 5.5: Implementing the sign oracle (optional)

In this problem, you will implement the sign oracle for functions of the form (5.14).

1. When n = 2 there are four such functions, as we discussed above. Can you find for
each of them a QUIRKY circuit that implements the sign oracle?

2. Explain in words or pictures how you can implement the sign oracle in the general
case (i.e., when n ≥ 1 and the bits a1, . . . , an ∈ {0, 1} are arbitrary).

We now present the Bernstein-Vazirani algorithm, which uncovers the hidden bitstring
[a1, . . . , an] using a single evaluation of the sign oracle for f :

1. Start with |0 . . . 0⟩.

2. Apply the Hadamard transform H ⊗ · · · ⊗ H.

3. Apply the sign oracle O f corresponding to the function f .

4. Apply the Hadamard transform H ⊗ · · · ⊗ H again.

5. Measure all qubits. The measurement outcome is precisely the bitstring [a1, . . . , an].

The algorithm is identical to the Deutsch-Jozsa algorithm in §5.2.3 except for the last step, which
is even simpler.

Homework 5.3: Run Bernstein-Vazirani

The orange Oracle box in QUIRKY implements the sign oracle for a function of the
form (5.14) with n = 4. Implement the Bernstein-Vazirani algorithm in QUIRKY and
use it to determine the hidden bitstring [a1, a2, a3, a4].

Why does this algorithm work? Now it is your turn to do the analysis!

108

Exercise 5.6: Verify Bernstein-Vazirani

The function f (x1, x2) = x2 corresponds to the bitstring [a1, a2] = [0, 1], as we saw earlier.
Show that when you run the Bernstein-Vazirani algorithm for this function, the measure-
ment outcome is indeed always [a1, a2] = [0, 1]. Don’t just verify this using QUIRKY, but
write down the state after each step yourself.

In the following homework problem you can analyze the general case:

Homework 5.4: Verify Bernstein-Vazirani (challenging)

Show that, when you run the Bernstein-Vazirani algorithm for a function of the form (5.14),
the measurement outcome is [a1, . . . , an] with 100% probability.

Hint: Since the first four steps of the algorithm are identical to the Deutsch-Jozsa algorithm,
the state right before the measurement is given by Eq. (5.13).

5.3 Searching with Grover

After returning safely back to Earth, Hila and Iman have become good friends with Alice and
Bob. The four of them decide to spend New Year’s Eve together. This day also coincides with
the drawing of the annual quantum lottery! They know that only one of the four can win the
grand prize, but who will it be? If we label our four protagonists by bitstrings, say,

Name x1 x2

Alice 0 0
Bob 0 1
Hila 1 0
Iman 1 1

then we can model the lottery by a function f : {0, 1}2 → {0, 1} which evaluates to 1 for the
bitstring corresponding to the winner. For example, if f (1, 0) = 1 then Hila is the winner of this
year’s lottery.

How can our friends determine the winner? Using a classical algorithm they have to
evaluate the function up to three times to determine the winner. Indeed, suppose that they
learn that f (0, 1) = 0 and f (1, 0) = 0 – then they still do not know whether Alice or Iman is the
winner! For archaic reasons that have long been forgotten, the rules of the lottery only allow
evaluating the function once. But naturally, the lottery is happy to apply the sign oracle O f to
any two-qubit states of our protagonists’ liking – after all, it is a quantum lottery. . .

Alice and her friends get together and start pondering. After a while, Bob grows impatient
and suggests: “Let us just follow the first few steps of Deutsch-Jozsa and Bernstein-Vazirani – surely
the same trick will work once again. . . ” The others do not really know of a better alternative, so
they go ahead and prepare the state

(H ⊗ H)(|0⟩ ⊗ |0⟩) = |+⟩ ⊗ |+⟩ = 1
2
(
|00⟩+ |01⟩+ |10⟩+ |11⟩

)
.

Next, they hand the state to the quantum lottery, which applies the sign oracle O f and returns
the state. Let a and b denote the two bits that label the winner, i.e., f (a, b) = 1 and all other
function values are zero. Then the two-qubit state returned by the lottery is the following:

1
2
(
|00⟩+ |01⟩+ |10⟩+ |11⟩ − 2 |a, b⟩

)
=

1
2
(
|00⟩+ |01⟩+ |10⟩+ |11⟩

)
− |a, b⟩

= |+⟩ ⊗ |+⟩ − |a⟩ ⊗ |b⟩ ,

109

where the −2 |a, b⟩ in the first line replaces one of the plus signs by a minus sign. After applying
a Hadamard transform, they arrive at the following state:

|0⟩ ⊗ |0⟩ − H |a⟩ ⊗ H |b⟩

= |00⟩ − 1
2

(
|0⟩+ (−1)a |1⟩

)
⊗
(
|0⟩+ (−1)b |1⟩

)
= −1

2

(
− |00⟩+ (−1)a |10⟩+ (−1)b |01⟩+ (−1)a+b |11⟩

)
Now our friends are confused and not quite sure what to do. Hila has an idea: “I don’t really like
the minus sign in front of |00⟩. Why don’t we apply a quantum operation that looks as follows?”

|00⟩ 7→ − |00⟩
|01⟩ 7→ |01⟩
|10⟩ 7→ |10⟩
|11⟩ 7→ |11⟩

(5.16)

Iman joins in: “I think I know how to build this using a controlled-Z operation and a handful of NOTs. . . ”
In no time, our friends arrive at the following state:

−1
2

(
|00⟩+ (−1)a |10⟩+ (−1)b |01⟩+ (−1)a+b |11⟩

)
After only a brief moment, Alice realizes: “This two-qubit state can be written as a tensor product!”

−1
2

(
|0⟩+ (−1)a |1⟩

)
⊗
(
|0⟩+ (−1)b |1⟩

)
= −(H ⊗ H) |a, b⟩ .

Bob is elated: “Aha! We only need to apply another Hadamard transform and measure both qubits. . . ”
Can you also figure out who the winner of this year’s quantum lottery will be?

Homework 5.5: Quantum lottery

1. Write the quantum operation in Eq. (5.16) using a controlled-Z operation and a few
NOT operations.

Hint: Recall that the controlled-Z operation CZ1→2 acts on basis states |x, y⟩ as follows:
If x = 0 then it does nothing. If x = 1 then it acts as a Z on the second qubit. You
learned last week how to build it in QUIRKY.

2. Build the quantum algorithm that Alice, Bob, Hila, and Iman came up with in QUIRKY,
and determine the winner of this year’s quantum Lottery .

The quantum algorithm that our friends just discovered is a special case of Grover’s al-
gorithm. Grovers algorithm solves the following problem: Given an oracle for a function
f : {0, 1}n → {0, 1}, it finds x1, . . . , xn ∈ {0, 1} such that f (x1, . . . , xn) = 1. We can think of this
problem as finding a lottery winner among 2n participants or, less prosaically, finding an item
that satisfies some property of interest in an unstructured database (by which we mean that the
database entries are not sorted or similarly). By the same argument that we gave before, any
classical algorithm will in the worst case need to look at all but one of the 2n many entries before
it is done (also in the average case one still needs to look at about half the entries). In contrast,
Grover’s algorithm only needs to use the oracle only a number of times that is proportional to√

2n, which grows much more slowly with n! Grover’s algorithm is a very versatile tool which
gives a square-root speedup for many computational problems.

110

5.3.1 Angle amplification

The final quantum algorithm that we will discuss is a very important subroutine that is used
in many other quantum algorithms (for example, it is at the heart of Grover’s algorithm for
functions with more than n = 2 input bits).

The problem this subroutine solves might at first appear very strange. Indeed, it is a purely
quantum problem that does not even have a meaningful classical formulation. Nevertheless, it
appears naturally in various other algorithms, which makes the subroutine very useful. This
highlights how different the ideas behind quantum algorithms are and that novel ways of
thinking are required for inventing new quantum algorithms!

Moreover, this is an example of a problem where the oracle needs to be consulted more than
once. This is different from all of the quantum algorithms we considered earlier in this quest,
which used the oracle only once.

Homework 5.6: What is the angle? (challenging)

Alice and Bob hand are distraught. “We’re so sorry for the trouble,” they tell you. “We built
this beautiful reflection V(θ) with angle

θ = +
π

4k
or θ = − π

4k
,

but we just cannot remember which one it was – we only remember the integer k ≥ 1!”a

What adds to their trouble is that the gate will self-destruct when used more than k times.
Can you help them out? Your task, if you choose to accept it, is to determine which of the
two angles is the correct one by using the gate V(θ) at most k times.

Hint: Two consecutive reflections make a rotation. What do you get by combining NOT
and V(θ)? (You don’t need the general formula in Exercise 4.6 to answer this question.)

aIf you like, you can think of this reflection as an oracle that hides one of the two angles in a funny way.

5.4 Your quantum journey

This last problem concludes The Quantum Quest. Wow, it has already been five weeks – this class
has been quite the journey! We really hope that you had a good time during the past weeks and
that you learned a lot of interesting mathematics.

If you can’t get enough of quantum computing, do not despair. By now, you are already
a seasoned wizard of quantum bits and well-equipped to study a more advanced book on
your own. Why don’t you look and see if your local library has a copy of the book ‘Quantum
Computation and Quantum Information’ by Michael Nielsen and Isaac Chuang?

111

5.5 Exercise solutions

Solution to Exercise 5.1
The other three functions are f = NOT and the two constant functions f (0) = f (1) = 0
and f (0) = f (1) = 1.

• For the NOT function:

UNOT |a, b⟩ = |a, b⊕NOT(a)⟩ = |a, b⊕ a⊕ 1⟩ = |a, NOT(b⊕ a)⟩ ,

which we recognize can be written as a composition of a controlled-NOT operation
and a NOT operation on the second qubit, i.e.,

UNOT = (I ⊗NOT)CNOT1→2.

In QUIRKY this looks as follows:

• For the all-zeros function f (0) = f (1) = 0:

U f |a, b⟩ = |a, b⟩ ,

so we do not have to do anything at all:

• For the all-ones function f (0) = f (1) = 1:

U f |a, b⟩ = |a, b⊕ 1⟩ = |a, NOT(b)⟩ ,

so we only need to invert the second qubit:

112

https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%2C%22%E2%80%A2%22%5D%2C%5B%22NOT%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5B%22NOT%22%5D%5D%7D

Solution to Exercise 5.2
There are four functions: the ‘identity’ function f (x) = x, the NOT function, the all-zeros
function, and the all-ones function.

• For the identity function f (x) = x, Eq. (5.6) reads

O f |x⟩ = (−1)x |x⟩ ,

so this is precisely the Z gate:

• For the NOT function f (x) = NOT(x), we want

O f |x⟩ = (−1)NOT(x) |x⟩ = NOT Z NOT |x⟩ ,

which corresponds to the following sequence:

• For the all-zeros function with f (0) = f (1) = 0:

O f |x⟩ = |x⟩ ,

so we do not have to do anything at all:

• For the all-ones function with f (0) = f (1) = 1:

O f |x⟩ = − |x⟩ ,

which we can achieve by combining the first two oracles in sequence:

Indeed, the first oracle adds a minus sign if x = 1, while the second oracle adds a
minus sign if x = 0, so we get a minus sign in either case:

NOT Z NOT Z |0⟩ = NOT Z NOT |0⟩ = − |0⟩ ,
NOT Z NOT Z |1⟩ = NOT Z NOT(− |1⟩) = −NOT Z NOT |1⟩ = − |1⟩ .

In the second to last step, we used linearity to move the minus sign to the front.

113

https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22Z%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22NOT%22%5D%2C%5B1%2C%22Z%22%5D%2C%5B1%2C%22NOT%22%5D%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5D%7D
https://www.quantum-quest.org/quirky/QuirkyQuest5.html#circuit=%7B%22cols%22%3A%5B%5B1%2C%22Z%22%5D%2C%5B1%2C%22NOT%22%5D%2C%5B1%2C%22Z%22%5D%2C%5B1%2C%22NOT%22%5D%5D%7D

Solution to Exercise 5.3
We evaluate Eq. (5.7) for all four functions.

• For f (x) = x:

HO f |+⟩ =
1 + (−1)

2
|0⟩+ 1− (−1)

2
|1⟩ = |1⟩ .

• For f (x) = NOT(x):

HO f |+⟩ =
−1 + 1

2
|0⟩+ −1− 1

2
|1⟩ = − |1⟩ .

• For the all-zeros function:

HO f |+⟩ =
1 + 1

2
|0⟩+ 1− 1

2
|1⟩ = |0⟩ .

• For the all-ones function:

HO f |+⟩ =
(−1) + (−1)

2
|0⟩+ (−1)− (−1)

2
|1⟩ = − |0⟩ .

Solution to Exercise 5.4

1. Here ??? stands for x1y1.

2. For n = 2,

(H ⊗ H) |x1, x2⟩ = (H |x1⟩)⊗ (H |x2⟩)

=

 1√
2

∑
y1∈{0,1}

(−1)x1y1 |y1⟩

⊗
 1√

2
∑

y2∈{0,1}
(−1)x2y2 |y2⟩


=

1
2 ∑

y1,y2∈{0,1}
(−1)x1y1(−1)x2y2 |y1⟩ ⊗ |y2⟩

=
1
2 ∑

y1,y2∈{0,1}
(−1)x1y1+x2y2 |y1, y2⟩ ,

so ??? stands for x1y1 + x2y2.

114

Solution to Exercise 5.5

1. Here are the four functions and their sign oracles:

• For [a1, a2] = [0, 0], O f |x1, x2⟩ = |x1, x2⟩, so the sign oracle does nothing at all.

• For [a1, a2] = [0, 1], O f |x1, x2⟩ = (−1)x2 |x1, x2⟩, which is the same as I ⊗ Z.

• For [a1, a2] = [1, 0], O f |x1, x2⟩ = (−1)x1 |x1, x2⟩, which is the same as Z⊗ I.

• For [a1, a2] = [1, 1], O f |x1, x2⟩ = (−1)x1+x2 |x1, x2⟩ = (−1)x1(−1)x2 |x1, x2⟩,
which is the same as Z⊗ Z.

It is clear what these four operations look like in QUIRKY.

2. The general pattern is now clear. For an arbitrary function of the form (5.14):

O f |x1, . . . , xn⟩ = (−1)x1a1+...+xnan |x1, . . . , xn⟩ = (Za1 ⊗ · · · ⊗ Zan) |x1, . . . , xn⟩ ,

where we write Z1 = Z and Z0 = I. In other words, we apply a Z gate on the j-th
qubit if and only if aj = 1.

Solution to Exercise 5.6
In step 1 we start with:

|00⟩

In step 2 we apply H ⊗ H and obtain:

1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

=
1
2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)

In step 3 we apply the sign oracle O f for f (x1, x2) = x2:

1
2
(|00⟩ − |01⟩+ |10⟩ − |11⟩)

In step 4 we apply again H ⊗ H, resulting in:

1
2

(
(H ⊗ H) |00⟩ − (H ⊗ H) |01⟩+ (H ⊗ H) |10⟩ − (H ⊗ H) |11⟩

)
=

1
4

(
(|00⟩+ |01⟩+ |10⟩+ |11⟩)− (|00⟩ − |01⟩+ |10⟩ − |11⟩)

+ (|00⟩+ |01⟩ − |10⟩ − |11⟩)− (|00⟩ − |01⟩ − |10⟩+ |11⟩)
)

= |01⟩ .

In step 5 we measure both qubits and always obtain the result [0, 1].

115

	The Quantum Quest
	Quest 1: Maestro of probability
	Probabilistic bits
	Multiplying probabilities
	Adding probabilities
	Probability and computation

	Operations on a probabilistic bit
	Extending by linearity
	Random operations

	Measuring a probabilistic bit
	The Quirky simulator
	Getting started
	Making your own operations
	A mysterious operation

	Exercise solutions

	Quest 2: Conqueror of the qubit
	Quantum bits
	Probabilities versus amplitudes
	Qubit as a circle

	Measuring a quantum bit
	Simulating quantum bits with Quirky
	Operations on a quantum bit
	Rotations
	Composing quantum operations
	Reflections

	Distinguishing quantum states
	Another mysterious operation

	Interlude on physics (optional)
	Interference
	Polarization

	Exercise solutions

	Quest 3: Wizard of entanglement
	Two probabilistic bits
	Measuring both bits
	Local operations
	Measuring only one bit
	State of the other bit
	SWAP operation
	Controlled-NOT operation
	Product distributions
	Correlated distributions

	Two quantum bits
	Measuring two qubits
	Local operations
	Parallel operations
	Controlled operations
	Entangled states
	Entanglement and correlations
	The power of entanglement

	Exercise solutions

	Quest 4: Quantum composer
	Quantum circuits
	Many quantum bits
	Operations
	The most general quantum operations
	Circuit identities
	Measuring all qubits
	Measuring some of the qubits only

	Quantum surprises
	No cloning
	One-time pad
	Quantum teleportation
	A glance at quantum networks
	The uncertainty principle

	Exercise solutions

	Quest 5: Algorithm virtuoso
	Talking to oracles
	Reversible computation
	Bit oracles
	Sign oracles

	Quantum algorithms
	Deutsch's algorithm
	Hadamard transform and interference
	Deutsch-Jozsa algorithm
	Bernstein-Vazirani algorithm

	Searching with Grover
	Angle amplification

	Your quantum journey
	Exercise solutions

